A scalable cryogenic memory system is one of the prime requirements for the implementation of practical quantum computers, large-scale single flux quantum circuits, and space electronics. Here, we leverage the memristive behavior of a conductance-asymmetric superconducting quantum interference device (CA SQUID) to design an ultra-fast and low-power memory system. We develop a physics-based circuit-compatible model for CA-SQUID-based superconducting memristors (ScMs). Using this compact model, we design and test an ScM-based nonvolatile cryogenic memory system and explore the design space. Via analyzing the sensitivity and tunability of the device hysteresis up to the array level, we provide a comprehensive guideline for its experimental realization. The ScM-based memory system has the potential to solve the scalability issue of the state-of-the-art superconducting data storage systems and may trigger rapid advancement in quantum computing, space electronics, and cryogenic neuromorphic systems.

1.
W.
Chen
,
A. V.
Rylyakov
,
V.
Patel
,
J. E.
Lukens
, and
K. K.
Likharev
,
IEEE Trans. Appl. Supercond.
9
,
3212
(
1999
).
2.
NSA
,
Superconducting Technology Assessment
(
National Security Agency
,
2005
).
3.
D. S.
Holmes
,
A. L.
Ripple
, and
M. A.
Manheimer
,
IEEE Trans. Appl. Supercond.
23
,
1701610
(
2013
).
4.
S. S.
Tannu
,
D. M.
Carmean
, and
M. K.
Qureshi
, in
ACM International Conference Proceeding Series
(
2017
).
5.
D. B.
Tuckerman
,
M. C.
Hamilton
,
D. J.
Reilly
,
R.
Bai
,
G. A.
Hernandez
,
J. M.
Hornibrook
,
J. A.
Sellers
, and
C. D.
Ellis
,
Supercond. Sci. Technol.
29
,
084007
(
2016
).
6.
S.
Tahara
,
I.
Ishida
,
Y.
Ajisawa
, and
Y.
Wada
,
J. Appl. Phys.
65
,
851
(
1989
).
7.
S.
Tahara
,
I.
Ishida
,
S.
Nagasawa
,
M.
Hidaka
,
H.
Tsuge
, and
Y.
Wada
, “
A 4-Kbit Josephson Nondestructive ReadOut Ram Operated At 580 psec and 6.7 mW
,”
IEEE Trans. Magn.
27
,
2626
2633
(
1991
).
8.
S.
Nagasawa
,
Y.
Hashimoto
,
H.
Numata
, and
S.
Tahara
,
IEEE Trans. Appl. Supercond.
5
,
2447
(
1995
).
9.
S.
Nagasawa
,
H.
Numata
,
Y.
Hashimoto
, and
S.
Tahara
,
IEEE Trans. Appl. Supercond.
9
,
3708
(
1999
).
10.
P. F.
Yuh
,
IEEE Trans. Appl. Supercond.
3
,
3013
(
1993
).
11.
P. F.
Yuh
, “
A Buffered Nondestructive-Readout Josephson Memory Cell with Three Gates
,”
IEEE Trans. Magn.
27
,
2876
2878
(
1991
).
12.
S. V.
Polonsky
,
A. F.
Kirichenko
,
V. K.
Semenov
, and
K. K.
Likharev
,
IEEE Trans. Appl. Supercond.
5
,
3000
(
1995
).
13.
A. F.
Kirichenko
,
S.
Sarwana
,
D. K.
Brock
, and
M.
Radpavar
,
IEEE Trans. Appl. Supercond.
11
,
537
(
2001
).
14.
V. V.
Ryazanov
,
V. V.
Bol'ginov
,
D. S.
Sobanin
,
I. V.
Vernik
,
S. K.
Tolpygo
,
A. M.
Kadin
, and
O. A.
Mukhanov
,
Phys. Procedia
36
,
35
(
2012
).
15.
N.
Nair
,
A.
Jafari-Salim
,
A.
D'Addario
,
N.
Imam
, and
Y.
Braiman
,
Supercond. Sci. Technol.
32
,
115012
(
2019
).
16.
C. J.
Wang
,
C. Y.
Ng
, and
R. H.
Brook
,
J. Am. Med. Assoc.
323
,
1341
(
2020
).
17.
S.
Alam
,
M. S.
Hossain
, and
A.
Aziz
,
Sci. Rep.
11
,
7892
(
2021
).
18.
Z.
Wang
,
H.
Ying
,
N.
Tasneem
,
A.
Gaskell
,
J. D.
Cressler
,
M.
Mourigal
, and
A. I.
Khan
, in
Device Research Conference-Conference Digest
, DRC (
2019
).
19.
L.
Lang
,
Y.
Jiang
,
F.
Lu
,
C.
Wang
,
Y.
Chen
,
A. D.
Kent
, and
L.
Ye
,
Appl. Phys. Lett.
116
,
022409
(
2020
).
20.
T.
Van Duzer
,
L.
Zheng
,
S. R.
Whiteley
,
H.
Kim
,
J.
Kim
,
X.
Meng
, and
T.
Ortlepp
,
IEEE Trans. Appl. Supercond.
23
,
1700504
(
2013
).
21.
U.
Ghoshal
,
H.
Kroger
, and
T.
Van Duzer
,
IEEE Trans. Appl. Supercond.
3
,
2315
(
1993
).
22.
M. H.
Nguyen
,
G. J.
Ribeill
,
M. V.
Gustafsson
,
S.
Shi
,
S. V.
Aradhya
,
A. P.
Wagner
,
L. M.
Ranzani
,
L.
Zhu
,
R.
Baghdadi
,
B.
Butters
,
E.
Toomey
,
M.
Colangelo
,
P. A.
Truitt
,
A.
Jafari-Salim
,
D.
McAllister
,
D.
Yohannes
,
S. R.
Cheng
,
R.
Lazarus
,
O.
Mukhanov
,
K. K.
Berggren
,
R. A.
Buhrman
,
G. E.
Rowlands
, and
T. A.
Ohki
,
Sci. Rep.
10
,
248
(
2020
).
23.
B. D.
Josephson
, “
Possible new effects in superconductive tunnelling
,”
Phys. Lett.
1
,
251
253
(
1962
).
24.
P. W.
Anderson
and
J. M.
Rowell
,
Phys. Rev. Lett.
10
,
230
(
1963
).
25.
G. L.
Ingold
,
H.
Grabert
, and
U.
Eberhardt
,
Phys. Rev. B
50
,
395
(
1994
).
26.
R. C.
Jaklevic
,
J.
Lambe
,
A. H.
Silver
, and
J. E.
Mercereau
,
Phys. Rev. Lett.
12
,
159
(
1964
).
27.
K. K.
Likharev
and
V. K.
Semenov
,
IEEE Trans. Appl. Supercond.
1
,
3
(
1991
).
28.
G.
Wendin
and
V. S.
Shumeiko
,
Low Temp. Phys.
33
,
724
(
2007
).
29.
J.
Clarke
and
F. K.
Wilhelm
,
Nature
453
,
1031
(
2008
).
30.
W. C.
Stewart
,
Appl. Phys. Lett.
12
,
277
(
1968
).
31.
D. E.
McCumber
,
J. Appl. Phys.
39
,
3113
(
1968
).
32.
A. M.
Van Den Brink
,
G.
Schön
, and
L. J.
Geerligs
,
Phys. Rev. Lett.
67
,
3030
(
1991
).
33.
R. E.
Harris
,
Phys. Rev. B
10
,
84
(
1974
).
34.
R. E.
Harris
,
Phys. Rev. B
11
,
3329
(
1975
).
35.
A. B.
Zorin
,
I. O.
Kulik
,
K. K.
Likharev
, and
J. R.
Schrieffer
, in
Selected Papers of J Robert Schrieffer: In Celebration of his 70th Birthday
(
2002
).
36.
O. H.
Soerensen
,
J.
Mygind
, and
N. F.
Pedersen
,
Phys. Rev. Lett.
39
,
1018
(
1977
).
37.
D. A.
Vincent
and
B. S.
Deaver
,
Phys. Rev. Lett.
32
,
212
(
1974
).
38.
M.
Nisenoff
and
S.
Wolf
,
Phys. Rev. B
12
,
1712
(
1975
).
39.
C. M.
Falco
,
W. H.
Parker
, and
S. E.
Trullinger
,
Phys. Rev. Lett.
31
,
933
(
1973
).
40.
J.
Bardeen
,
L. N.
Cooper
, and
J. R.
Schrieffer
,
Phys. Rev.
106
,
162
(
1957
).
41.
G.
Catelani
,
J.
Koch
,
L.
Frunzio
,
R. J.
Schoelkopf
,
M. H.
Devoret
, and
L. I.
Glazman
,
Phys. Rev. Lett.
106
,
077002
(
2011
).
42.
J.
Leppäkangas
,
M.
Marthaler
, and
G.
Schön
,
Phys. Rev. B
84
,
060505
(
2011
).
43.
I. M.
Pop
,
K.
Geerlings
,
G.
Catelani
,
R. J.
Schoelkopf
,
L. I.
Glazman
, and
M. H.
Devoret
,
Nature
508
,
369
(
2014
).
44.
S.
Peotta
and
M.
Di Ventra
,
Phys. Rev. Appl.
2
,
034011
(
2014
).
45.
R. E.
Jewett
,
Josephson Junctions in SPICE 2G5
(
University of California
,
1982
).
46.
S. R.
Whiteley
,
IEEE Trans. Magn.
27
,
2902
(
1991
).
47.
E. S.
Fang
and
T.
Van Duzer
, in
Extended Abstracts of 1989 International Superconductivity Electronics Conference (ISEC 1989)
(
1989
).
48.
J. A.
Delport
,
K.
Jackman
,
P.
Le Roux
, and
C. J.
Fourie
, “
JoSIM - Superconductor SPICE simulator
,”
IEEE Trans. Appl. Supercond.
29
,
1
5
(
2019
).
49.
S.
Alam
,
M. A.
Jahangir
, and
A.
Aziz
,
IEEE Electron Device Lett.
41
,
1249
(
2020
).
50.
V.
Ambegaokar
and
A.
Baratoff
,
Phys. Rev. Lett.
10
,
486
(
1963
).
51.
A.
Shoji
,
Encyclopaedia of Materials: Science and Technology
(
Elsevier
,
2001
).
52.
M.
Tinkham
and
V.
Emery
,
Phys. Today
49
(
10
),
74
(
1996
).
53.
L. O.
Chua
,
IEEE Trans. Circuit Theory
18
,
507
(
1971
).
54.
L. O.
Chua
, “
Nonlinear circuit foundations for nanodevices, Part I: The four-element torus
,”
Proc. IEEE
91
,
1830
1859
(
2003
).
55.
D. B.
Strukov
,
G. S.
Snider
,
D. R.
Stewart
, and
R. S.
Williams
,
Nature
453
,
80
(
2008
).
56.
L. O.
Chua
and
S. M.
Kang
,
Proc. IEEE
64
,
209
(
1976
).
57.
Q. Y.
Zhao
,
E. A.
Toomey
,
B. A.
Butters
,
A. N.
McCaughan
,
A. E.
Dane
,
S. W.
Nam
, and
K. K.
Berggren
,
Supercond. Sci. Technol.
31
,
035009
(
2018
).
58.
A. N.
McCaughan
and
K. K.
Berggren
,
Nano Lett.
14
,
5748
(
2014
).
59.
G. D.
Simoni
,
F.
Paolucci
,
P.
Solinas
,
E.
Strambini
, and
F.
Giazotto
,
Nat. Nanotechnol.
13
,
802
(
2018
).
60.
S.
Weinreb
,
J. C.
Bardin
, and
H.
Mani
,
IEEE Trans. Microwave Theory Tech.
55
,
2306
(
2007
).
61.
R. F.
Dziuba
,
B. F.
Field
, and
T. F.
Finnegan
,
IEEE Trans. Instrum. Meas.
23
,
264
(
1974
).
62.
Y.
Braiman
,
B.
Neschke
,
N.
Nair
,
N.
Imam
, and
R.
Glowinski
,
Phys. Rev. E
94
,
052223
(
2016
).
63.
W.
Wernsdorfer
,
Supercond. Sci. Technol.
22
,
064013
(
2009
).
64.
K.
Hasselbach
,
D.
Mailly
, and
J. R.
Kirtley
, “Micro-SQUID characteristics,” arXiv preprint cond-mat/0110517 (
2001
).
65.
J.
Gallop
,
Supercond. Sci. Technol.
16
,
1575
1582
(
2003
).
66.
M.
Di Ventra
and
Y. V.
Pershin
,
Nat. Phys.
9
,
200
(
2013
).
67.
F.
Chiarello
,
P.
Carelli
,
M. G.
Castellano
, and
G.
Torrioli
,
Supercond. Sci. Technol.
26
,
125009
(
2013
).

Supplementary Material

You do not currently have access to this content.