Flux qubits are among the first qubits that were ever demonstrated. They have some advantages when compared to capacitively shunted charge qubits, which are now commonly used for building prototypes of quantum processors. Specifically, flux qubits are intrinsically nonlinear systems and they remain so even with low charging energies, which is important for the suppression of large charge noise in solids. In spite of the clear advantages of flux qubits, their applications in multi-qubit devices—prototypes of quantum computers and simulators—are still limited. Flux qubits are also a very powerful tool for fundamental research. In this paper, we discuss the basic properties of flux qubits using the radio frequency superconducting quantum interference device geometry—the most fundamental realization of flux qubits. We also compare and analyze experimental realizations of flux qubits and propose further directions for research.

1.
J.
Preskill
, “
Quantum computing in the NISQ era and beyond
,”
Quantum
2
,
79
(
2018
).
2.
A. W.
Harrow
and
A.
Montanaro
, “
Quantum computational supremacy
,”
Nature
549
,
203
209
(
2017
).
3.
J.
Koch
,
T. M.
Yu
,
J.
Gambetta
,
A. A.
Houck
,
D. I.
Schuster
,
J.
Majer
,
A.
Blais
,
M. H.
Devoret
,
S. M.
Girvin
, and
R. J.
Schoelkopf
, “
Charge-insensitive qubit design derived from the Cooper pair box
,”
Phys. Rev. A
76
,
042319
(
2007
).
4.
J. A.
Schreier
,
A. A.
Houck
,
J.
Koch
,
D. I.
Schuster
,
B. R.
Johnson
,
J. M.
Chow
,
J. M.
Gambetta
,
J.
Majer
,
L.
Frunzio
,
M. H.
Devoret
,
S. M.
Girvin
, and
R. J.
Schoelkopf
, “
Suppressing charge noise decoherence in superconducting charge qubits
,”
Phys. Rev. B
77
,
180502
(
2008
).
5.
J.
Otterbach
,
R.
Manenti
,
N.
Alidoust
,
A.
Bestwick
,
M.
Block
,
B.
Bloom
,
S.
Caldwell
,
N.
Didier
,
E. S.
Fried
,
S.
Hong
 et al, “
Unsupervised machine learning on a hybrid quantum computer
,” arXiv:1712.05771 (
2017
).
6.
Y.
Wang
,
Y.
Li
,
Z. q.
Yin
, and
B.
Zeng
, “
16-qubit IBM universal quantum computer can be fully entangled
,”
npj Quantum Inf.
4
,
46
(
2018
).
7.
J. J.
Burnett
,
A.
Bengtsson
,
M.
Scigliuzzo
,
D.
Niepce
,
M.
Kudra
,
P.
Delsing
, and
J.
Bylander
, “
Decoherence benchmarking of superconducting qubits
,”
npj Quantum Inf.
5
,
54
(
2019
).
8.
M.
Brink
,
J. M.
Chow
,
J.
Hertzberg
,
E.
Magesan
, and
S.
Rosenblatt
, “
Device challenges for near term superconducting quantum processors: Frequency collisions
,” in
2018 IEEE International Electron Devices Meeting (IEDM)
(
IEEE
,
2018
), pp.
6.1.1
6.1.3
.
9.
R.
Schutjens
,
F. A.
Dagga
,
D. J.
Egger
, and
F. K.
Wilhelm
, “
Single-qubit gates in frequency-crowded transmon systems
,”
Phys. Rev. A
88
,
052330
(
2013
).
10.
G.
Fedorov
,
V.
Yursa
,
A.
Efimov
,
K.
Shiianov
,
A. Y.
Dmitriev
,
I.
Rodionov
,
A.
Dobronosova
,
D.
Moskalev
,
A.
Pishchimova
,
E.
Malevannaya
 et al, “
Light dressing of a diatomic superconducting artificial molecule
,”
Phys. Rev. A
102
,
013707
(
2020
).
11.
R.
Harris
,
Y.
Sato
,
A. J.
Berkley
,
M.
Reis
,
F.
Altomare
,
M. H.
Amin
,
K.
Boothby
,
P.
Bunyk
,
C.
Deng
,
C.
Enderud
,
S.
Huang
,
E.
Hoskinson
,
M. W.
Johnson
,
E.
Ladizinsky
,
N.
Ladizinsky
,
T.
Lanting
,
R.
Li
,
T.
Medina
,
R.
Molavi
,
R.
Neufeld
,
T.
Oh
,
I.
Pavlov
,
I.
Perminov
,
G.
Poulin-Lamarre
,
C.
Rich
,
A.
Smirnov
,
L.
Swenson
,
N.
Tsai
,
M.
Volkmann
,
J.
Whittaker
, and
J.
Yao
, “
Phase transitions in a programmable quantum spin glass simulator
,”
Science
361
,
162
165
(
2018
).
12.
C. C.
McGeoch
, “
Adiabatic quantum computation and quantum annealing: Theory and practice
,”
Synth. Lect. Quantum Comput.
5
,
1
93
(
2014
).
13.
F.
Hassler
,
A.
Akhmerov
, and
C.
Beenakker
, “
The top-transmon: A hybrid superconducting qubit for parity-protected quantum computation
,”
New J. Phys.
13
,
095004
(
2011
).
14.
S.
Gladchenko
,
D.
Olaya
,
E.
Dupont-Ferrier
,
B.
Douçot
,
L. B.
Ioffe
, and
M. E.
Gershenson
, “
Superconducting nanocircuits for topologically protected qubits
,”
Nat. Phys.
5
,
48
53
(
2009
).
15.
A. G.
Fowler
,
M.
Mariantoni
,
J. M.
Martinis
, and
A. N.
Cleland
, “
Surface codes: Towards practical large-scale quantum computation
,”
Phys. Rev. A
86
,
032324
(
2012
).
16.
J.
Kelly
,
R.
Barends
,
A. G.
Fowler
,
A.
Megrant
,
E.
Jeffrey
,
T. C.
White
,
D.
Sank
,
J. Y.
Mutus
,
B.
Campbell
,
Y.
Chen
 et al, “
State preservation by repetitive error detection in a superconducting quantum circuit
,”
Nature
519
,
66
69
(
2015
).
17.
F.
Yan
,
S.
Gustavsson
,
A.
Kamal
,
J.
Birenbaum
,
A. P.
Sears
,
D.
Hover
,
T. J.
Gudmundsen
,
D.
Rosenberg
,
G.
Samach
,
S.
Weber
 et al, “
The flux qubit revisited to enhance coherence and reproducibility
,”
Nat. Commun.
7
,
12964
(
2016
).
18.
I.
Chiorescu
,
Y.
Nakamura
,
C. M.
Harmans
, and
J.
Mooij
, “
Coherent quantum dynamics of a superconducting flux qubit
,”
Science
299
,
1869
1871
(
2003
).
19.
O.
Astafiev
,
L.
Ioffe
,
S.
Kafanov
,
Y. A.
Pashkin
,
K. Y.
Arutyunov
,
D.
Shahar
,
O.
Cohen
, and
J.
Tsai
, “
Coherent quantum phase slip
,”
Nature
484
,
355
358
(
2012
).
20.
I. V.
Pechenezhskiy
,
R. A.
Mencia
,
L. B.
Nguyen
,
Y.-H.
Lin
, and
V. E.
Manucharyan
, “
The superconducting quasicharge qubit
,”
Nature
585
,
368
371
(
2020
).
21.
C.
Cosmelli
,
P.
Carelli
,
M. G.
Castellano
,
F.
Chiarello
,
G. D.
Palazzi
,
R.
Leoni
, and
G.
Torrioli
, “
Measurement of the intrinsic dissipation of a macroscopic system in the quantum regime
,”
Phys. Rev. Lett.
82
,
5357
5360
(
1999
).
22.
Y.
Ye
,
K.
Peng
,
M.
Naghiloo
,
G.
Cunningham
, and
K. P.
O'Brien
, “
Engineering purely nonlinear coupling with the Quarton
,” arXiv:2010.09959 (
2020
).
23.
F.
Yan
,
Y.
Sung
,
P.
Krantz
,
A.
Kamal
,
D. K.
Kim
,
J. L.
Yoder
,
T. P.
Orlando
,
S.
Gustavsson
, and
W. D.
Oliver
, “
Engineering framework for optimizing superconducting qubit designs
,” arXiv:2006.04130 (
2020
).
24.
U.
Vool
,
A.
Kou
,
W. C.
Smith
,
N. E.
Frattini
,
K.
Serniak
,
P.
Reinhold
,
I. M.
Pop
,
S.
Shankar
,
L.
Frunzio
,
S. M.
Girvin
, and
M. H.
Devoret
, “
Driving forbidden transitions in the fluxonium artificial atom
,”
Phys. Rev. Appl.
9
,
054046
(
2018
).
25.
A.
Abdumalikov
, Jr.
,
O.
Astafiev
,
A. M.
Zagoskin
,
Y. A.
Pashkin
,
Y.
Nakamura
, and
J. S.
Tsai
, “
Electromagnetically induced transparency on a single artificial atom
,”
Phys. Rev. Lett.
104
,
193601
(
2010
).
26.
S.
Verbrugh
,
M.
Benhamadi
,
E.
Visscher
, and
J.
Mooij
, “
Optimization of island size in single electron tunneling devices: Experiment and theory
,”
J. Appl. Phys.
78
,
2830
2836
(
1995
).
27.
G.
Zimmerli
,
T. M.
Eiles
,
R. L.
Kautz
, and
J. M.
Martinis
, “
Noise in the Coulomb blockade electrometer
,”
Appl. Phys. Lett.
61
,
237
239
(
1992
).
28.
F. C.
Wellstood
,
C.
Urbina
, and
J.
Clarke
, “
Low-frequency noise in dc superconducting quantum interference devices below 1 K
,”
Appl. Phys. Lett.
50
,
772
774
(
1987
).
29.
F.
Yoshihara
,
K.
Harrabi
,
A.
Niskanen
,
Y.
Nakamura
, and
J. S.
Tsai
, “
Decoherence of flux qubits due to 1/f flux noise
,”
Phys. Rev. Lett.
97
,
167001
(
2006
).
30.
P.
Kumar
,
S.
Sendelbach
,
M. A.
Beck
,
J. W.
Freeland
,
Z.
Wang
,
H.
Wang
,
C. C.
Yu
,
R. Q.
Wu
,
D. P.
Pappas
, and
R.
McDermott
, “
Origin and reduction of 1/f magnetic flux noise in superconducting devices
,”
Phys. Rev. Appl.
6
,
041001
(
2016
).
31.
P.
Krantz
,
M.
Kjaergaard
,
F.
Yan
,
T. P.
Orlando
,
S.
Gustavsson
, and
W. D.
Oliver
, “
A quantum engineer's guide to superconducting qubits
,”
Appl. Phys. Rev.
6
,
021318
(
2019
).
32.
P.
Bertet
,
I.
Chiorescu
,
G.
Burkard
,
K.
Semba
,
C. J. P. M.
Harmans
,
D. P.
DiVincenzo
, and
J. E.
Mooij
, “
Dephasing of a superconducting qubit induced by photon noise
,”
Phys. Rev. Lett.
95
,
257002
(
2005
).
33.
A. A.
Abdumalikov
, Jr.
,
O.
Astafiev
,
Y.
Nakamura
,
Y. A.
Pashkin
, and
J.
Tsai
, “
Vacuum Rabi splitting due to strong coupling of a flux qubit and a coplanar-waveguide resonator
,”
Phys. Rev. B
78
,
180502
(
2008
).
34.
O.
Astafiev
,
A. M.
Zagoskin
,
A.
Abdumalikov
,
Y. A.
Pashkin
,
T.
Yamamoto
,
K.
Inomata
,
Y.
Nakamura
, and
J. S.
Tsai
, “
Resonance fluorescence of a single artificial atom
,”
Science
327
,
840
843
(
2010
).
35.
O. V.
Astafiev
,
A. A.
Abdumalikov
,
A. M.
Zagoskin
,
Y. A.
Pashkin
,
Y.
Nakamura
, and
J. S.
Tsai
, “
Ultimate on-chip quantum amplifier
,”
Phys. Rev. Lett.
104
,
183603
(
2010
).
36.
A. Y.
Dmitriev
,
R.
Shaikhaidarov
,
T.
Hönigl-Decrinis
,
S.
de Graaf
,
V.
Antonov
, and
O.
Astafiev
, “
Probing photon statistics of coherent states by continuous wave mixing on a two-level system
,”
Phys. Rev. A
100
,
013808
(
2019
).
37.
T.
Hönigl-Decrinis
,
I. V.
Antonov
,
R.
Shaikhaidarov
,
V. N.
Antonov
,
A. Y.
Dmitriev
, and
O. V.
Astafiev
, “
Mixing of coherent waves in a single three-level artificial atom
,”
Phys. Rev. A
98
,
041801
(
2018
).
38.
I. V.
Antonov
,
R. S.
Shaikhaidarov
,
V. N.
Antonov
, and
O. V.
Astafiev
, “
Superconducting ‘twin’ qubit
,”
Phys. Rev. B
102
,
115422
(
2020
).
39.
A. Y.
Dmitriev
,
A.
Korenkov
, and
O.
Astafiev
, “
Scattering spectroscopy of a superconducting artificial atom coupled to two half spaces
,”
JETP Lett.
105
,
110
113
(
2017
).
40.
Z.
Peng
,
S.
De Graaf
,
J.
Tsai
, and
O.
Astafiev
, “
Tuneable on-demand single-photon source in the microwave range
,”
Nat. Commun.
7
,
12588
(
2016
).
41.
P.
Neilinger
,
S. N.
Shevchenko
,
J.
Bogár
,
M.
Rehák
,
G.
Oelsner
,
D. S.
Karpov
,
U.
Hübner
,
O.
Astafiev
,
M.
Grajcar
, and
E.
Il'ichev
, “
Landau-Zener-Stückelberg-Majorana lasing in circuit quantum electrodynamics
,”
Phys. Rev. B
94
,
094519
(
2016
).
42.
A. Y.
Dmitriev
,
R.
Shaikhaidarov
,
V.
Antonov
,
T.
Hönigl-Decrinis
, and
O.
Astafiev
, “
Quantum wave mixing and visualisation of coherent and superposed photonic states in a waveguide
,”
Nat. Commun.
8
,
1352
(
2017
).
43.
J.
Peltonen
,
P.
Coumou
,
Z.
Peng
,
T.
Klapwijk
,
J.
Tsai
, and
O.
Astafiev
, “
Hybrid rf SQUID qubit based on high kinetic inductance
,”
Sci. Rep.
8
,
10033
(
2018
).
44.
J. T.
Peltonen
,
O. V.
Astafiev
,
Y. P.
Korneeva
,
B. M.
Voronov
,
A. A.
Korneev
,
I. M.
Charaev
,
A. V.
Semenov
,
G. N.
Golt'sman
,
L. B.
Ioffe
,
T. M.
Klapwijk
, and
J. S.
Tsai
, “
Coherent flux tunneling through NbN nanowires
,”
Phys. Rev. B
88
,
220506
(
2013
).
45.
V. E.
Manucharyan
,
J.
Koch
,
L. I.
Glazman
, and
M. H.
Devoret
, “
Fluxonium: Single Cooper-pair circuit free of charge offsets
,”
Science
326
,
113
116
(
2009
).
46.
L. B.
Nguyen
,
Y.-H.
Lin
,
A.
Somoroff
,
R.
Mencia
,
N.
Grabon
, and
V. E.
Manucharyan
, “
High-coherence fluxonium qubit
,”
Phys. Rev. X
9
,
041041
(
2019
).
47.
N.
Earnest
,
S.
Chakram
,
Y.
Lu
,
N.
Irons
,
R. K.
Naik
,
N.
Leung
,
L.
Ocola
,
D. A.
Czaplewski
,
B.
Baker
,
J.
Lawrence
,
J.
Koch
, and
D. I.
Schuster
, “
Realization of a Λ system with metastable states of a capacitively shunted fluxonium
,”
Phys. Rev. Lett.
120
,
150504
(
2018
).
48.
S.
Linzen
,
M.
Ziegler
,
O.
Astafiev
,
M.
Schmelz
,
U.
Hübner
,
M.
Diegel
,
E.
Il'ichev
, and
H.
Meyer
, “
Structural and electrical properties of ultrathin niobium nitride films grown by atomic layer deposition
,”
Supercond. Sci. Technol.
30
,
035010
(
2017
).
49.
J.
Mooij
and
C.
Harmans
, “
Phase-slip flux qubits
,”
New J. Phys.
7
,
219
(
2005
).
50.
J. E.
Mooij
and
Y. V.
Nazarov
, “
Superconducting nanowires as quantum phase-slip junctions
,”
Nat. Phys.
2
,
169
172
(
2006
).
51.
J. T.
Peltonen
,
Z. H.
Peng
,
Y. P.
Korneeva
,
B. M.
Voronov
,
A. A.
Korneev
,
A. V.
Semenov
,
G. N.
Gol'tsman
,
J. S.
Tsai
, and
O. V.
Astafiev
, “
Coherent dynamics and decoherence in a superconducting weak link
,”
Phys. Rev. B
94
,
180508
(
2016
).
52.
S.
De Graaf
,
S.
Skacel
,
T.
Hönigl-Decrinis
,
R.
Shaikhaidarov
,
H.
Rotzinger
,
S.
Linzen
,
M.
Ziegler
,
U.
Hübner
,
H.-G.
Meyer
,
V.
Antonov
 et al, “
Charge quantum interference device
,”
Nat. Phys.
14
,
590
594
(
2018
).
53.
L.
Grünhaupt
,
M.
Spiecker
,
D.
Gusenkova
,
N.
Maleeva
,
S. T.
Skacel
,
I.
Takmakov
,
F.
Valenti
,
P.
Winkel
,
H.
Rotzinger
,
W.
Wernsdorfer
 et al, “
Granular aluminium as a superconducting material for high-impedance quantum circuits
,”
Nat. Mater.
18
,
816
819
(
2019
).
54.
K.
Shulga
,
E.
Il'ichev
,
M. V.
Fistul
,
I.
Besedin
,
S.
Butz
,
O.
Astafiev
,
U.
Hübner
, and
A. V.
Ustinov
, “
Magnetically induced transparency of a quantum metamaterial composed of twin flux qubits
,”
Nat. Commun.
9
,
150
(
2018
).
55.
A.
Kou
,
W. C.
Smith
,
U.
Vool
,
R. T.
Brierley
,
H.
Meier
,
L.
Frunzio
,
S. M.
Girvin
,
L. I.
Glazman
, and
M. H.
Devoret
, “
Fluxonium-based artificial molecule with a tunable magnetic moment
,”
Phys. Rev. X
7
,
031037
(
2017
).
56.
S. M.
Frolov
,
M. J.
Stoutimore
,
T. A.
Crane
,
D. J.
Van Harlingen
,
V. A.
Oboznov
,
V. V.
Ryazanov
,
A.
Ruosi
,
C.
Granata
, and
M.
Russo
, “
Imaging spontaneous currents in superconducting arrays of π-junctions
,”
Nat. Phys.
4
,
32
36
(
2008
).
57.
A.
Shcherbakova
,
K.
Fedorov
,
K.
Shulga
,
V.
Ryazanov
,
V.
Bolginov
,
V.
Oboznov
,
S.
Egorov
,
V.
Shkolnikov
,
M.
Wolf
,
D.
Beckmann
 et al, “
Fabrication and measurements of hybrid Nb/Al Josephson junctions and flux qubits with π-shifters
,”
Supercond. Sci. Technol.
28
,
025009
(
2015
).
58.
A.
Gyenis
,
P. S.
Mundada
,
A. D.
Paolo
,
T. M.
Hazard
,
X.
You
,
D. I.
Schuster
,
J.
Koch
,
A.
Blais
, and
A. A.
Houck
, “
Experimental realization of an intrinsically error-protected superconducting qubit
,” arXiv:1910.07542 (
2019
).
59.
P.
Groszkowski
,
A. D.
Paolo
,
A.
Grimsmo
,
A.
Blais
,
D.
Schuster
,
A.
Houck
, and
J.
Koch
, “
Coherence properties of the 0-π qubit
,”
New J. Phys.
20
,
043053
(
2018
).
60.
A.
Izmalkov
,
M.
Grajcar
,
E.
Il'ichev
,
T.
Wagner
,
H.-G.
Meyer
,
A. Y.
Smirnov
,
M. H. S.
Amin
,
A. M.
van den Brink
, and
A. M.
Zagoskin
, “
Evidence for entangled states of two coupled flux qubits
,”
Phys. Rev. Lett.
93
,
037003
(
2004
).
61.
M.
Grajcar
,
A.
Izmalkov
,
S. H. W.
van der Ploeg
,
S.
Linzen
,
E.
Il'ichev
,
T.
Wagner
,
U.
Hübner
,
H.-G.
Meyer
,
A.
Maassen van den Brink
,
S.
Uchaikin
, and
A. M.
Zagoskin
, “
Direct Josephson coupling between superconducting flux qubits
,”
Phys. Rev. B
72
,
020503
(
2005
).
62.
Q.
Ficheux
,
L. B.
Nguyen
,
A.
Somoroff
,
H.
Xiong
,
K. N.
Nesterov
,
M. G.
Vavilov
, and
V. E.
Manucharyan
, “
Fast logic with slow qubits: Microwave-activated controlled-z gate on low-frequency fluxoniums
,”
Phys. Rev. X
11
,
021026
(
2021
).
63.
N. D.
Birell
and
P. C. W.
Davies
,
Quantum Fields in Curved Space
(
Cambridge University Press
,
1982
).
64.
Z.
Peng
,
Y.-X.
Liu
,
J.
Peltonen
,
T.
Yamamoto
,
J.
Tsai
, and
O.
Astafiev
, “
Correlated emission lasing in harmonic oscillators coupled via a single three-level artificial atom
,”
Phys. Rev. Lett.
115
,
223603
(
2015
).
65.
Y.
Zhou
,
Z.
Peng
,
Y.
Horiuchi
,
O.
Astafiev
, and
J.
Tsai
, “
Tunable microwave single-photon source based on transmon qubit with high efficiency
,”
Phys. Rev. Appl.
13
,
034007
(
2020
).
You do not currently have access to this content.