In this Letter, the role of Ti addition in thick hematite mesoporous photoanodes was elucidated by performing intensity modulated photocurrent spectroscopy (IMPS) monitoring its charge carrier dynamics during water oxidation. Interface engineering associated with doping of hematite is crucial to develop highly efficient thick photoanodes. Photoelectrochemical data recorded under front- and back-side illumination show that Ti insertion mitigates the collection deficit faced by hematite due to an energy barrier decrease between the grains and a change in the surface chemistry. IMPS reveals that Ti clearly influences the hematite film performance by increasing the charge separation efficiency due to its segregation at the hematite interface. However, Ti insertion does not enhance the kinetics of water oxidation at the solid–liquid interface. These facts indicate that Ti mainly affects the hematite electronic properties instead of accelerating the surface processes. This comprehensive understanding of the electronic transport and charge carrier dynamics in Ti:hematite photoanodes enables the control and design of better interfaces for more efficient photoelectrochemical water splitting.

1.
K.
Sivula
,
R.
Zboril
,
F.
Le Formal
,
R.
Robert
,
A.
Weidenkaff
,
J.
Tucek
,
J.
Frydrych
, and
M.
Grätzel
, “
Photoelectrochemical water splitting with mesoporous hematite prepared by a solution-based colloidal approach
,”
J. Am. Chem. Soc.
132
,
7436
7444
(
2010
).
2.
S.
Shen
,
S. A.
Lindley
,
X.
Chen
, and
J. Z.
Zhang
, “
Hematite heterostructures for photoelectrochemical water splitting: Rational materials design and charge carrier dynamics
,”
Energy Environ. Sci.
9
,
2744
2775
(
2016
).
3.
A. L. M.
Freitas
,
D. N. F.
Muche
,
E. R.
Leite
, and
F. L.
Souza
, “
Interface engineering of nanoceramic hematite photoelectrode for solar energy conversion
,”
J. Am. Ceram. Soc.
103
,
6833
6846
(
2020
).
4.
A. L. M.
Freitas
and
F. L.
Souza
, “
Synergetic effect of Sn addition and oxygen-deficient atmosphere to fabricate active hematite photoelectrodes for light-induced water splitting
,”
Nanotechnology
28
,
454002
(
2017
).
5.
M. R. S.
Soares
,
C. A. R.
Costa
,
E. M.
Lanzoni
,
J.
Bettini
,
C. A. O.
Ramirez
,
F. L.
Souza
,
E.
Longo
, and
E. R.
Leite
, “
Unraveling the role of Sn segregation in the electronic transport of polycrystalline hematite: Raising the electronic conductivity by lowering the grain-boundary blocking effect
,”
Adv. Electron. Mater.
5
,
1900065
(
2019
).
6.
J.
Wang
,
N. H.
Perry
,
L.
Guo
,
L.
Vayssieres
, and
H. L.
Tuller
, “
On the theoretical and experimental control of defect chemistry and electrical and photoelectrochemical properties of hematite nanostructures
,”
ACS Appl. Mater. Interfaces
11
,
2031
2041
(
2019
).
7.
T. J.
Smart
,
V. U.
Baltazar
,
M.
Chen
,
B.
Yao
,
K.
Mayford
,
F.
Bridges
,
Y.
Li
, and
Y.
Ping
, “
Doping bottleneck in hematite: Multipole clustering by small polarons
,”
Chem. Mater.
33
,
4390
(
2021
).
8.
G.
Xie
,
X.
Zhang
,
X.
Ouyang
,
Q.
Xin
,
B.
Guo
, and
J. R.
Gong
, “
Irradiation direction‐dependent surface charge recombination in hematite thin‐film oxygen evolution photoanodes
,”
ChemCatChem
11
,
6332
6338
(
2019
).
9.
F.
Le Formal
,
N.
Tétreault
,
M.
Cornuz
,
T.
Moehl
,
M.
Grätzel
, and
K.
Sivula
, “
Passivating surface states on water splitting hematite photoanodes with alumina overlayers
,”
Chem. Sci.
2
,
737
743
(
2011
).
10.
Z.
Zhang
,
I.
Karimata
,
H.
Nagashima
,
S.
Muto
,
K.
Ohara
,
K.
Sugimoto
, and
T.
Tachikawa
, “
Interfacial oxygen vacancies yielding long-lived holes in hematite mesocrystal-based photoanodes
,”
Nat. Commun.
10
,
4832
(
2019
).
11.
F. C.
de Lima
,
G. R.
Schleder
,
J. B.
Souza Junior
,
F. L.
Souza
,
F. B.
Destro
,
R. H.
Miwa
,
E. R.
Leite
, and
A.
Fazzio
, “
Unveiling the dopant segregation effect at hematite interfaces
,”
Appl. Phys. Lett.
118
,
201602
(
2021
).
12.
M.
Rodríguez-Pérez
,
I.
Rodríguez-Gutiérrez
,
A.
Vega-Poot
,
R.
García-Rodríguez
,
G.
Rodríguez-Gattorno
, and
G.
Oskam
, “
Charge transfer and recombination kinetics at WO3 for photoelectrochemical water oxidation
,”
Electrochim. Acta
258
,
900
908
(
2017
).
13.
E. A.
Ponomarev
and
L. M.
Peter
, “
A comparison of intensity modulated photocurrent spectroscopy and photoelectrochemical impedance spectroscopy in a study of photoelectrochemical hydrogen evolution at p-InP
,”
J. Electroanal. Chem.
397
,
45
52
(
1995
).
14.
L.
Peter
, “
Photoelectrochemical kinetics: Hydrogen evolution on p-type semiconductors
,”
J. Electrochem. Soc.
166
,
H3125
H3132
(
2019
).
15.
I.
Rodríguez-Gutiérrez
,
R.
García-Rodríguez
,
M.
Rodríguez-Pérez
,
A.
Vega-Poot
,
G.
Rodríguez Gattorno
,
B. A.
Parkinson
, and
G.
Oskam
, “
Charge transfer and recombination dynamics at inkjet-printed CuBi2O4 electrodes for photoelectrochemical water splitting
,”
J. Phys. Chem. C
122
,
27169
27179
(
2018
).
16.
I.
Rodríguez-Gutiérrez
,
E.
Djatoubai
,
J.
Su
,
A.
Vega-Poot
,
G.
Rodríguez-Gattorno
,
F. L.
Souza
, and
G.
Oskam
, “
An intensity-modulated photocurrent spectroscopy study of the charge carrier dynamics of WO3/BiVO4 heterojunction systems
,”
Sol. Energy Mater. Sol. Cells
208
,
110378
(
2020
).
17.
L. M.
Peter
,
K. G. U.
Wijayantha
, and
A. A.
Tahir
, “
Kinetics of light-driven oxygen evolution at α-Fe2O3 electrodes
,”
Faraday Discuss.
155
,
309
322
(
2012
).
18.
E. A.
Ponomarev
and
L. M.
Peter
, “
A generalized theory of intensity modulated photocurrent spectroscopy (IMPS)
,”
J. Electroanal. Chem.
396
,
219
226
(
1995
).
19.
C. Y.
Cummings
,
F.
Marken
,
L. M.
Peter
,
A. A.
Tahir
, and
K. G. U.
Wijayantha
, “
Kinetics and mechanism of light-driven oxygen evolution at thin film α-Fe2O3 electrodes
,”
Chem. Commun.
48
,
2027
2029
(
2012
).
20.
D. J.
Fermín
,
E. A.
Ponomarev
, and
L. M.
Peter
, “
Kinetic study of CdS photocorrosion by intensity modulated photocurrent and photoelectrochemical impedance spectroscopy
,”
J. Electroanal. Chem.
473
,
192
203
(
1999
).
21.
C. X.
Kronawitter
,
I.
Zegkinoglou
,
S. H.
Shen
,
P.
Liao
,
I. S.
Cho
,
O.
Zandi
,
Y. S.
Liu
,
K.
Lashgari
,
G.
Westin
,
J. H.
Guo
,
F. J.
Himpsel
,
E. A.
Carter
,
X. L.
Zheng
,
T. W.
Hamann
,
B. E.
Koel
,
S. S.
Mao
, and
L.
Vayssieres
, “
Titanium incorporation into hematite photoelectrodes: Theoretical considerations and experimental observations
,”
Energy Environ. Sci.
7
,
3100
3121
(
2014
).

Supplementary Material

You do not currently have access to this content.