Meeting the ambitious challenge of net-zero greenhouse gas emissions by 2050 and holding the average increase in global temperature below 1.5 °C necessitate the upscaling of readily available renewable energy sources, especially solar photovoltaics. Since the window of time to achieve this goal is closing fast, it is of paramount importance that we accelerate the decarbonization of the global energy system by increasing the power output of solar cells through advancing their power conversion efficiencies toward and beyond the Shockley–Queisser limit. In this Perspective, we describe how the integration of perovskites into the well-established silicon production infrastructure to form perovskite/silicon tandem photovoltaics can raise the rate of solar deployment. We present a holistic analysis of the technology from different perspectives, such as materials science, manufacturing, sustainability, and business, which highlights how the pairing of perovskite and silicon is advantageous at many different levels of consideration. Altogether, perovskite/silicon tandems deliver a technological disruption in efficiency while maintaining compatibility with the present photovoltaics industry, making it the fastest route to enhance the silicon market and rapidly address climate change.

1.
See https://unfccc.int/News/2020-a-Critical-Year-for-Addressing-Climate-Change-Ovais-Sarmad for a “
Critical Year for Addressing Climate Change
” (
2020
).
2.
CONSTRAIN, “
Zero in on: A new generation of climate models, COVID-19 and the Paris agreement
,” The CONSTRAIN Project Annual Report,
2020
.
3.
See
J.
Rogelj
,
D.
Shindell
,
K.
Jiang
,
S.
Fifita
,
P.
Forster
,
V.
Ginzburg
,
C.
Handa
,
S.
Kobayashi
,
E.
Kriegler
,
L.
Mundaca
,
R.
Séférian
,
M. V.
Vilariño
,
K.
Calvin
,
J.
Emmerling
,
S.
Fuss
,
N.
Gillett
,
C.
He
,
E.
Hertwich
,
L.
Höglund-Isaksson
,
D.
Huppmann
,
G.
Luderer
,
D. L.
McCollum
,
M.
Meinshausen
,
R.
Millar
,
A.
Popp
,
P.
Purohit
,
K.
Riahi
,
A.
Ribes
,
H.
Saunders
,
C.
Schädel
,
P.
Smith
,
E.
Trutnevyte
,
Y.
Xiu
,
W.
Zhou
,
K.
Zickfeld
,
G.
Flato
,
J.
Fuglestvedt
,
R.
Mrabet
, and
R.
Schaeffer
, https://www.ipcc.ch/site/assets/uploads/sites/2/2019/05/SR15_Chapter2_High_Res.pdf for Mitigation pathways compatible with 1.5 °C in the context of sustainable development.
4.
P.
Friedlingstein
,
M.
O'Sullivan
,
M. W.
Jones
,
R. M.
Andrew
,
J.
Hauck
,
A.
Olsen
,
G. P.
Peters
,
W.
Peters
,
J.
Pongratz
,
S.
Sitch
,
C. L.
Quéré
,
J. G.
Canadell
,
P.
Ciais
,
R. B.
Jackson
,
S.
Alin
,
L. E. O. C.
Aragão
,
A.
Arneth
,
V.
Arora
,
N. R.
Bates
,
M.
Becker
,
A.
Benoit-Cattin
,
H. C.
Bittig
,
L.
Bopp
,
S.
Bultan
,
N.
Chandra
,
F.
Chevallier
,
L. P.
Chini
,
W.
Evans
,
L.
Florentie
,
P. M.
Forster
,
T.
Gasser
,
M.
Gehlen
,
D.
Gilfillan
,
T.
Gkritzalis
,
L.
Gregor
,
N.
Gruber
,
I.
Harris
,
K.
Hartung
,
V.
Haverd
,
R. A.
Houghton
,
T.
Ilyina
,
A. K.
Jain
,
E.
Joetzjer
,
K.
Kadono
,
E.
Kato
,
V.
Kitidis
,
J. I.
Korsbakken
,
P.
Landschützer
,
N.
Lefèvre
,
A.
Lenton
,
S.
Lienert
,
Z.
Liu
,
D.
Lombardozzi
,
G.
Marland
,
N.
Metzl
,
D. R.
Munro
,
J. E. M. S.
Nabel
,
S.-I.
Nakaoka
,
Y.
Niwa
,
K.
O'Brien
,
T.
Ono
,
P. I.
Palmer
,
D.
Pierrot
,
B.
Poulter
,
L.
Resplandy
,
E.
Robertson
,
C.
Rödenbeck
,
J.
Schwinger
,
R.
Séférian
,
I.
Skjelvan
,
A. J. P.
Smith
,
A. J.
Sutton
,
T.
Tanhua
,
P. P.
Tans
,
H.
Tian
,
B.
Tilbrook
,
G.
van der Werf
,
N.
Vuichard
,
A. P.
Walker
,
R.
Wanninkhof
,
A. J.
Watson
,
D.
Willis
,
A. J.
Wiltshire
,
W.
Yuan
,
X.
Yue
, and
S.
Zaehle
,
Earth Syst. Sci. Data
12
,
3269
(
2020
).
5.
V.
Masson-Delmotte
,
P.
Zhai
,
H.-O.
Pörtner
,
D.
Roberts
,
J.
Skea
,
P. R.
Shukla
,
A.
Pirani
,
W.
Moufouma-Okia
,
C.
Péan
,
R.
Pidcock
,
S.
Connors
,
J. B. R.
Matthews
,
Y.
Chen
,
X.
Zhou
,
M. I.
Gomis
,
E.
Lonnoy
,
T.
Maycock
,
M.
Tignor
, and
T.
Waterfield
, Global Warming of 1.5 °C. An IPCC Special Report on the Impacts of Global Warming of 1.5 °C above Pre-Industrial Levels and Related Global Greenhouse Gas Emission Pathways, in the Context of Strengthening the Global Response to the Threat of Climate Change, Sustainable Development, and Efforts to Eradicate Poverty (
IPCC
,
2018
).
6.
See https://www.climatewatchdata.org/ghg-emissions
for “
Historical GHG Emissions—Climate Watch
.”
7.
See
World Resources Institute
, https://www.wri.org/Blog/2020/02/Greenhouse-Gas-Emissions-by-Country-Sector for “4 Charts explain greenhouse gas emissions by countries and sectors” (
2020
).
8.
IRENA
,
Future of Solar Photovoltaic: Deployment, Investment, Technology, Grid Integration and Socio-Economic Aspects (A Global Energy Transformation: Paper)
(
International Renewable Energy Agency
,
Abu Dhabi
,
2019
).
9.
See
https://www.iea.org/reports/world-energy-outlook-2020 for “
World Energy Outlook 2020–Analysis
,” IEA
.
10.
M.
Fischer
,
M.
Woodhouse
,
S.
Herritsch
, and
J.
Trube
,
International Technology Roadmap for Photovoltaic (ITRPV): Results 2019
, 11th ed. (
VDMA Photovoltaic Equipment
,
2020
).
11.
Fraunhofer Institute for Solar Energy Systems (ISE
), Photovoltaics Report, 16 September 2020, available at https://www.ise.fraunhofer.de/content/dam/ise/de/documents/publications/studies/Photovoltaics-Report.pdf.
12.
G. M.
Wilson
,
M.
Al-Jassim
,
W. K.
Metzger
,
S. W.
Glunz
,
P.
Verlinden
,
G.
Xiong
,
L. M.
Mansfield
,
B. J.
Stanbery
,
K.
Zhu
,
Y.
Yan
,
J. J.
Berry
,
A. J.
Ptak
,
F.
Dimroth
,
B. M.
Kayes
,
A. C.
Tamboli
,
R.
Peibst
,
K.
Catchpole
,
M. O.
Reese
,
C. S.
Klinga
,
P.
Denholm
,
M.
Morjaria
,
M. G.
Deceglie
,
J. M.
Freeman
,
M. A.
Mikofski
,
D. C.
Jordan
,
G.
TamizhMani
, and
D. B.
Sulas-Kern
,
J. Phys. D: Appl. Phys.
53
,
493001
(
2020
).
15.
See https://www.nrel.gov/pv/cell-efficiency.html for “
Best Research-Cell Efficiency Chart
,”
U.S. National Renewable Energy Laboratory,
2021
.
16.
A.
Richter
,
M.
Hermle
, and
S. W.
Glunz
,
IEEE J. Photovoltaics
3
,
1184
(
2013
).
17.
M. J.
Kerr
,
A.
Cuevas
, and
P.
Campbell
,
Prog. Photovoltaics: Res. Appl.
11
,
97
(
2003
).
18.
See http://www.azurspace.com/images/products/0004355-00-01_3C44_AzurDesign_10x10.pdf
for “
3C44, Concentrator Triple Junction Solar Cell
,”
Azur Space Solar Power GMBH
.
19.
See https://www.spectrolab.com/photovoltaics/C4MJ_40_Percent_Solar_Cell.pdf for “
C4MJ Metamorphic Fourth Generation CPV Technology
,”
Spectrolab
.
20.
A.
Aho
,
R.
Isoaho
,
M.
Raappana
,
T.
Aho
,
E.
Anttola
,
J.
Lyytikäinen
,
A.
Hietalahti
,
V.
Polojärvi
,
A.
Tukiainen
,
J.
Reuna
,
L.
Peltomaa
, and
M.
Guina
,
Prog. Photovoltaics: Res. Appl.
29
,
869
(
2021
).
21.
S.
Essig
,
C.
Allebé
,
T.
Remo
,
J. F.
Geisz
,
M. A.
Steiner
,
K.
Horowitz
,
L.
Barraud
,
J. S.
Ward
,
M.
Schnabel
,
A.
Descoeudres
,
D. L.
Young
,
M.
Woodhouse
,
M.
Despeisse
,
C.
Ballif
, and
A.
Tamboli
,
Nat Energy
2
,
17144
(
2017
).
22.
Z.
Yu
,
M.
Leilaeioun
, and
Z.
Holman
,
Nat Energy
1
,
16137
(
2016
).
23.
D. C.
Bobela
,
K. J.
Schmieder
,
M. P.
Lumb
,
J. E.
Moore
,
R. J.
Walters
,
E. A.
Armour
,
L.
Matthew
,
R.
Rao
,
A.
Mascarenhas
, and
K.
Alberi
, in
2017 IEEE 44th Photovoltaic Specialist Conference (PVSC)
(
IEEE
,
2017
), pp.
2506
2510
, available at https://ieeexplore.ieee.org/document/8366407.
24.
I. M.
Peters
,
S.
Sofia
,
J.
Mailoa
, and
T.
Buonassisi
,
RSC Adv.
6
,
66911
(
2016
).
25.
J.
Werner
,
B.
Niesen
, and
C.
Ballif
,
Adv. Mater. Interfaces
5
,
1700731
(
2018
).
26.
A. D.
Vos
,
J. Phys. D: Appl. Phys.
13
,
839
(
1980
).
27.
S.
Rühle
,
Phys. Status Solidi (a)
214
,
1600955
(
2017
).
28.
Z. J.
Yu
,
J. V.
Carpenter
, and
Z. C.
Holman
,
Nat. Energy
3
,
747
(
2018
).
29.
Z.
Wang
,
Z.
Peng
,
Z.
Xiao
,
D.
Seyitliyev
,
K.
Gundogdu
,
L.
Ding
, and
H.
Ade
,
Adv. Mater.
32
,
2005386
(
2020
).
30.
J.
Xiong
,
J.
Xu
,
Y.
Jiang
,
Z.
Xiao
,
Q.
Bao
,
F.
Hao
,
Y.
Feng
,
B.
Zhang
,
Z.
Jin
, and
L.
Ding
,
Sci. Bull.
65
,
1792
(
2020
).
31.
G. E.
Eperon
,
T.
Leijtens
,
K. A.
Bush
,
R.
Prasanna
,
T.
Green
,
J. T.-W.
Wang
,
D. P.
McMeekin
,
G.
Volonakis
,
R. L.
Milot
,
R.
May
,
A.
Palmstrom
,
D. J.
Slotcavage
,
R. A.
Belisle
,
J. B.
Patel
,
E. S.
Parrott
,
R. J.
Sutton
,
W.
Ma
,
F.
Moghadam
,
B.
Conings
,
A.
Babayigit
,
H.-G.
Boyen
,
S.
Bent
,
F.
Giustino
,
L. M.
Herz
,
M. B.
Johnston
,
M. D.
McGehee
, and
H. J.
Snaith
,
Science
354
,
861
(
2016
).
32.
D.
Zhao
,
Y.
Yu
,
C.
Wang
,
W.
Liao
,
N.
Shrestha
,
C. R.
Grice
,
A. J.
Cimaroli
,
L.
Guan
,
R. J.
Ellingson
,
K.
Zhu
,
X.
Zhao
,
R.-G.
Xiong
, and
Y.
Yan
,
Nat. Energy
2
,
17018
(
2017
).
33.
F.
Hao
,
C. C.
Stoumpos
,
R. P. H.
Chang
, and
M. G.
Kanatzidis
,
J. Am. Chem. Soc.
136
,
8094
(
2014
).
34.
C. C.
Stoumpos
,
C. D.
Malliakas
, and
M. G.
Kanatzidis
,
Inorg. Chem.
52
,
9019
(
2013
).
35.
J. H.
Noh
,
S. H.
Im
,
J. H.
Heo
,
T. N.
Mandal
, and
S. I.
Seok
,
Nano Lett.
13
,
1764
(
2013
).
36.
G. E.
Eperon
,
S. D.
Stranks
,
C.
Menelaou
,
M. B.
Johnston
,
L. M.
Herz
, and
H. J.
Snaith
,
Energy Environ. Sci.
7
,
982
(
2014
).
37.
D. P.
McMeekin
,
G.
Sadoughi
,
W.
Rehman
,
G. E.
Eperon
,
M.
Saliba
,
M. T.
Hörantner
,
A.
Haghighirad
,
N.
Sakai
,
L.
Korte
,
B.
Rech
,
M. B.
Johnston
,
L. M.
Herz
, and
H. J.
Snaith
,
Science
351
,
151
(
2016
).
38.
M.
Saliba
,
T.
Matsui
,
J.-Y.
Seo
,
K.
Domanski
,
J.-P.
Correa-Baena
,
N.
Mohammad, K.
,
S. M.
Zakeeruddin
,
W.
Tress
,
A.
Abate
,
A.
Hagfeldt
, and
M.
Grätzel
,
Energy Environ. Sci.
9
,
1989
(
2016
).
39.
R. J.
Sutton
,
G. E.
Eperon
,
L.
Miranda
,
E. S.
Parrott
,
B. A.
Kamino
,
J. B.
Patel
,
M. T.
Hörantner
,
M. B.
Johnston
,
A. A.
Haghighirad
,
D. T.
Moore
, and
H. J.
Snaith
,
Adv. Energy Mater.
6
,
1502458
(
2016
).
40.
T. C.-J.
Yang
,
P.
Fiala
,
Q.
Jeangros
, and
C.
Ballif
,
Joule
2
,
1421
(
2018
).
41.
E. T.
Hoke
,
D. J.
Slotcavage
,
E. R.
Dohner
,
A. R.
Bowring
,
H. I.
Karunadasa
, and
M. D.
McGehee
,
Chem. Sci.
6
,
613
(
2015
).
42.
A. J.
Knight
,
J.
Borchert
,
R. D. J.
Oliver
,
J. B.
Patel
,
P. G.
Radaelli
,
H. J.
Snaith
,
M. B.
Johnston
, and
L. M.
Herz
,
ACS Energy Lett.
6
,
799
(
2021
).
43.
A. J.
Barker
,
A.
Sadhanala
,
F.
Deschler
,
M.
Gandini
,
S. P.
Senanayak
,
P. M.
Pearce
,
E.
Mosconi
,
A. J.
Pearson
,
Y.
Wu
,
A. R.
Srimath Kandada
,
T.
Leijtens
,
F.
De Angelis
,
S. E.
Dutton
,
A.
Petrozza
, and
R. H.
Friend
,
ACS Energy Lett.
2
,
1416
(
2017
).
44.
J.
Xu
,
C. C.
Boyd
,
Z. J.
Yu
,
A. F.
Palmstrom
,
D. J.
Witter
,
B. W.
Larson
,
R. M.
France
,
J.
Werner
,
S. P.
Harvey
,
E. J.
Wolf
,
W.
Weigand
,
S.
Manzoor
,
M. F. A. M.
van Hest
,
J. J.
Berry
,
J. M.
Luther
,
Z. C.
Holman
, and
M. D.
McGehee
,
Science
367
,
1097
(
2020
).
45.
R. J.
Stoddard
,
A.
Rajagopal
,
R. L.
Palmer
,
I. L.
Braly
,
A. K.-Y.
Jen
, and
H. W.
Hillhouse
,
ACS Energy Lett.
3
,
1261
(
2018
).
46.
A.
Kojima
,
K.
Teshima
,
Y.
Shirai
, and
T.
Miyasaka
,
J. Am. Chem. Soc.
131
,
6050
(
2009
).
47.
J.
Jeong
,
M.
Kim
,
J.
Seo
,
H.
Lu
,
P.
Ahlawat
,
A.
Mishra
,
Y.
Yang
,
M. A.
Hope
,
F. T.
Eickemeyer
,
M.
Kim
,
Y. J.
Yoon
,
I. W.
Choi
,
B. P.
Darwich
,
S. J.
Choi
,
Y.
Jo
,
J. H.
Lee
,
B.
Walker
,
S. M.
Zakeeruddin
,
L.
Emsley
,
U.
Rothlisberger
,
A.
Hagfeldt
,
D. S.
Kim
,
M.
Grätzel
, and
J. Y.
Kim
,
Nature
592
,
381
(
2021
).
48.
Z.
Zhang
,
Z.
Li
,
L.
Meng
,
S.-Y.
Lien
, and
P.
Gao
,
Adv. Funct. Mater.
30
,
2001904
(
2020
).
49.
T. D.
Siegler
,
T. M.
Shimpi
,
W. S.
Sampath
, and
B. A.
Korgel
,
Chem. Eng. Sci.
199
,
388
(
2019
).
50.
Z.
Li
,
T. H.
Kim
,
S. Y.
Han
,
Y.-J.
Yun
,
S.
Jeong
,
B.
Jo
,
S. A.
Ok
,
W.
Yim
,
S. H.
Lee
,
K.
Kim
,
S.
Moon
,
J.-Y.
Park
,
T. K.
Ahn
,
H.
Shin
,
J.
Lee
, and
H. J.
Park
,
Adv. Energy Mater.
10
,
1903085
(
2020
).
51.
R.
Lin
,
K.
Xiao
,
Z.
Qin
,
Q.
Han
,
C.
Zhang
,
M.
Wei
,
M. I.
Saidaminov
,
Y.
Gao
,
J.
Xu
,
M.
Xiao
,
A.
Li
,
J.
Zhu
,
E. H.
Sargent
, and
H.
Tan
,
Nature Energy
4
,
864
(
2019
).
52.
G.
Kavlak
,
J.
McNerney
, and
J. E.
Trancik
,
Energy Policy
123
,
700
(
2018
).
53.
L.
Gil-Escrig
,
C.
Dreessen
,
I. C.
Kaya
,
B.-S.
Kim
,
F.
Palazon
,
M.
Sessolo
, and
H. J.
Bolink
,
ACS Energy Lett.
5
,
3053
(
2020
).
54.
M.
Liu
,
M. B.
Johnston
, and
H. J.
Snaith
,
Nature
501
,
395
(
2013
).
55.
C.
Momblona
,
L.
Gil-Escrig
,
E.
Bandiello
,
E. M.
Hutter
,
M.
Sessolo
,
K.
Lederer
,
J.
Blochwitz-Nimoth
, and
H. J.
Bolink
,
Energy Environ. Sci.
9
,
3456
(
2016
).
56.
S. R.
Ratnasingham
,
L.
Mohan
,
M.
Daboczi
,
T.
Degousée
,
R.
Binions
,
O.
Fenwick
,
J.-S.
Kim
,
M. A.
McLachlan
, and
J.
Briscoe
,
Mater. Adv.
2
,
1606
(
2021
).
57.
M. M.
Tavakoli
,
L.
Gu
,
Y.
Gao
,
C.
Reckmeier
,
J.
He
,
A. L.
Rogach
,
Y.
Yao
, and
Z.
Fan
,
Sci. Rep.
5
,
14083
(
2015
).
58.
M. T.
Hoerantner
,
E. L.
Wassweiler
,
H.
Zhang
,
A.
Panda
,
M.
Nasilowski
,
A.
Osherov
,
R.
Swartwout
,
A. E.
Driscoll
,
N. S.
Moody
,
M. G.
Bawendi
,
K. F.
Jensen
, and
V.
Bulović
,
ACS Appl. Mater. Interfaces
11
,
32928
(
2019
).
59.
Y.
Deng
,
E.
Peng
,
Y.
Shao
,
Z.
Xiao
,
Q.
Dong
, and
J.
Huang
,
Energy Environ. Sci.
8
,
1544
(
2015
).
60.
S.
Razza
,
F. D.
Giacomo
,
F.
Matteocci
,
L.
Cinà
,
A. L.
Palma
,
S.
Casaluci
,
P.
Cameron
,
A.
D'Epifanio
,
S.
Licoccia
,
A.
Reale
,
T. M.
Brown
, and
A. D.
Carlo
,
J. Power Sources
277
,
286
(
2015
).
61.
Z.
Wei
,
H.
Chen
,
K.
Yan
, and
S.
Yang
,
Angew. Chem. Int. Ed.
53
,
13239
(
2014
).
62.
A.
Mei
,
X.
Li
,
L.
Liu
,
Z.
Ku
,
T.
Liu
,
Y.
Rong
,
M.
Xu
,
M.
Hu
,
J.
Chen
,
Y.
Yang
,
M.
Grätzel
, and
H.
Han
,
Science
345
,
295
(
2014
).
63.
T. M.
Schmidt
,
T. T.
Larsen
,
‐Olsen
,
J. E.
Carlé
,
D.
Angmo
, and
F. C.
Krebs
,
Adv. Energy Mater.
5
,
1500569
(
2015
).
64.
K.
Hwang
,
Y.-S.
Jung
,
Y.-J.
Heo
,
F. H.
Scholes
,
S. E.
Watkins
,
J.
Subbiah
,
D. J.
Jones
,
D.-Y.
Kim
, and
D.
Vak
,
Adv. Mater.
27
,
1241
(
2015
).
65.
Y. Y.
Kim
,
T.-Y.
Yang
,
R.
Suhonen
,
M.
Välimäki
,
T.
Maaninen
,
A.
Kemppainen
,
N. J.
Jeon
, and
J.
Seo
,
Adv. Sci.
6
,
1802094
(
2019
).
66.
X.
Tian
,
S. D.
Stranks
, and
F.
You
,
Sci. Adv.
6
,
eabb0055
(
2020
).
67.
E.
Leccisi
and
V.
Fthenakis
,
Prog. Energy
2
,
032002
(
2020
).
68.
I.
Celik
,
A. B.
Phillips
,
Z.
Song
,
Y.
Yan
,
R. J.
Ellingson
,
M. J.
Heben
, and
D.
Apul
,
Energy Environ. Sci.
10
,
1874
(
2017
).
69.
I.
Celik
,
Z.
Song
,
A. J.
Cimaroli
,
Y.
Yan
,
M. J.
Heben
, and
D.
Apul
,
Sol. Energy Mater. Sol. Cells
156
,
157
(
2016
).
70.
See https://www.cheops-project.Eu/2018/11/19/First-Results-Regarding-the-Environmental-Impact-of-Perovskite-Silicon-Tandem-Pv-Modules/
for “
First Results Regarding the Environmental Impact of Perovskite/Silicon Tandem PV Modules,” CHEOPS
.
71.
See http://norsuncorp.no/wp-content/uploads/2021/02/2021-02-17-NorSun-Wafers-to-Power-New-Low-Emission-Maxeon-Solar-Technologies-Panels.pdf for “
NorSun's wafers powering new SunPower brand low CO2 footprint solar panels from Maxeon Solar Technologies
.”
72.
See https://www.nexwafe.com/site/assets/files/1021/nexwafe_round_b_final_for_2-4-2021.pdf for “
NexWafe GmbH lands €10 million funding round, aims to cut solar production costs by 30%, reduce CO2 emissions by 70%
.”
73.
See https://1366tech.com/technology/ for “
Our wafers
.”
74.
The European Parliament and the Council of the European Union
,
Directive 2012/19/EU of the European Parliament and of the Council of
4 July 2012 on Waste Electrical and Electronic Equipment (WEEE).
75.
See http://www.pvcycle.org.uk/ for “
WEEE Compliance and Waste Management Scheme
,”
PV CYCLE UK
.
76.
See
E.
Wesoff
and
B.
Beetz
, https://pv-magazine-usa.com/2020/12/03/Solar-Panel-Recycling-in-the-Us-a-Looming-Issue-That-Could-Harm-Growth-and-Reputation/ for “
Solar Panel Recycling in the US—A Looming Issue That Could Harm Industry Growth and Reputation
” (2020).
77.
See https://leginfo.legislature.ca.gov/faces/billNavClient.xhtml?bill_id=201520160SB489 for “
SB-489 Hazardous Waste: Photovoltaic Modules
,”
California Legislative Information
.
78.
See https://recyclepv.solar/ for “
Recycle PV Solar
.”
79.
S.
Chowdhury
,
K. S.
Rahman
,
T.
Chowdhury
,
N.
Nuthammachot
,
K.
Techato
,
M.
Akhtaruzzaman
,
S. K.
Tiong
,
S.
Kamaruzzaman
, and
N.
Amin
,
Energy Strategy Rev.
27
,
100431
(
2020
).
80.
International Organization for Standardization (ISO
), ISO 14040: Environmental Management—Life Cycle Assessment—Principles and Framework
(
ISO
,
2006
).
81.
S.
Weckend
,
A.
Wade
, and
G.
Heath
,
End of Life Management: Solar Photovoltaic Panels
(
IRENA
,
2016
).
82.
J.
Jean
,
P. R.
Brown
,
R. L.
Jaffe
,
T.
Buonassisi
, and
V.
Bulović
,
Energy Environ. Sci.
8
,
1200
(
2015
).
83.
R.
Schmalensee
,
V.
Bulovic
,
R.
Armstrong
,
C.
Batlle
,
P.
Brown
,
J.
Deutch
,
H.
Jacoby
,
R.
Jaffe
,
J.
Jean
,
R.
Miller
,
F.
O'Sullivan
,
J.
Parsons
,
J. I.
Pérez-Arriaga
,
N.
Seifkar
,
R.
Stoner
, and
C.
Vergara
, “
The future of solar energy: An interdisciplinary MIT study
,” Massachusetts Institute of Technology, MIT Energy Initiative (
2015
), available at http://mitei.mit.edu/futureofsolar.
84.
K.
Yoshikawa
,
H.
Kawasaki
,
W.
Yoshida
,
T.
Irie
,
K.
Konishi
,
K.
Nakano
,
T.
Uto
,
D.
Adachi
,
M.
Kanematsu
,
H.
Uzu
, and
K.
Yamamoto
,
Nat. Energy
2
,
17032
(
2017
).
85.
M.
Jeong
,
I. W.
Choi
,
E. M.
Go
,
Y.
Cho
,
M.
Kim
,
B.
Lee
,
S.
Jeong
,
Y.
Jo
,
H. W.
Choi
,
J.
Lee
,
J.-H.
Bae
,
S. K.
Kwak
,
D. S.
Kim
, and
C.
Yang
,
Science
369
,
1615
(
2020
).
86.
A.
Al-Ashouri
,
E.
Köhnen
,
B.
Li
,
A.
Magomedov
,
H.
Hempel
,
P.
Caprioglio
,
J. A.
Márquez
,
A. B. M.
Vilches
,
E.
Kasparavicius
,
J. A.
Smith
,
N.
Phung
,
D.
Menzel
,
M.
Grischek
,
L.
Kegelmann
,
D.
Skroblin
,
C.
Gollwitzer
,
T.
Malinauskas
,
M.
Jošt
,
G.
Matič
,
B.
Rech
,
R.
Schlatmann
,
M.
Topič
,
L.
Korte
,
A.
Abate
,
B.
Stannowski
,
D.
Neher
,
M.
Stolterfoht
,
T.
Unold
,
V.
Getautis
, and
S.
Albrecht
,
Science
370
,
1300
(
2020
).
87.
W. K.
Metzger
,
S.
Grover
,
D.
Lu
,
E.
Colegrove
,
J.
Moseley
,
C. L.
Perkins
,
X.
Li
,
R.
Mallick
,
W.
Zhang
,
R.
Malik
,
J.
Kephart
,
C.-S.
Jiang
,
D.
Kuciauskas
,
D. S.
Albin
,
M. M.
Al-Jassim
,
G.
Xiong
, and
M.
Gloeckler
,
Nat. Energy
4
,
837
(
2019
).
88.
M.
Nakamura
,
K.
Yamaguchi
,
Y.
Kimoto
,
Y.
Yasaki
,
T.
Kato
, and
H.
Sugimoto
,
IEEE J. Photovoltaics
9
,
1863
(
2019
).
89.
W. M.
Haynes
,
CRC Handbook of Chemistry and Physics
, 97th ed. (
CRC Press
,
2016
).
90.
USGS National Minerals Information Center,
Mineral Commodity Summaries
(
USGS National Minerals Information Center
,
2021
).
91.
P. J.
Verlinden
,
J. Renewable Sustainable Energy
12
,
053505
(
2020
).
92.
N.M.I.C. U.S. Geological Survey
, Iodine Statistics and Information.
93.
U.S. Geological Survey
, Cesium and Rubidium Statistics and Information.
94.
See
https://www.logicladder.com/2050-Dubai-Clean-Energy-Strategy/ for “
Dubai Clean Energy Strategy 2050—A Glimpse of Future
.”
95.
See
California Energy Commission
, https://www.energy.ca.gov/news/2020-02/california-energy-commission-approves-first-community-solar-proposal-under-2019
California Energy Commission Approves First Community Solar Proposal under 2019 Energy Code
.”
96.
See California Energy Commission
, https://www.energy.ca.gov/programs-and-topics/programs/building-energy-efficiency-standards/2019-building-energy-efficiency for “
Building Energy Efficiency Standards
,”
2019
.
97.
See
Z.
Shahan
, https://cleantechnica.com/2020/08/18/German-State-Requires-Solar-Panels-on-New-Non-Residential-Buildings/ for “
German State Requires Solar Panels On New, Non-Residential Buildings
,” CleanTechnica (
2020
).
98.
M. T.
Hörantner
and
H. J.
Snaith
,
Energy Environ. Sci
10
,
1983
(
2017
).

Supplementary Material

You do not currently have access to this content.