Deployment of 5G network infrastructure is a timely opportunity for millimeter-sized battery-free sensors. However, millimeter-wave (mmW) devices often suffer from high conversion loss and path loss that are heavily limiting their communication/detection distance, especially for the case of harmonic transponders based on Schottky diodes. A deep and comprehensive parametric understanding of the second-harmonic generation mechanism of Schottky diodes in the mmW 5G bands can help us to identify suitable diodes or guide diode fabrication to reduce transponder conversion loss. This work reveals that both diode nonlinear junction resistance and capacitance contribute to the second-harmonic generation across the mid-band (sub-7 GHz) and high-band (mmW) 5G frequency bands. However, the nonlinear junction capacitance dominates the second-harmonic generation in the mmW bands. Without Joule heating during the conversion process, the capacitive nonlinearity is more efficient than the resistive nonlinearity, which means that a Schottky diode with a lower junction capacitance will efficiently reduce its associated conversion loss. The VDI GaAs zero bias diode with a low zero bias nonlinear junction capacitance (19.19 fF) shows superior conversion loss performance, which indicates that it can be employed to enhance the detection distance of battery-free harmonic transponders in the mmW 5G bands.

1.
W.
Ejaz
and
M.
Ibnkahla
,
IEEE Internet Things J.
5
,
150
(
2018
).
2.
X.
Liu
and
X.
Zhang
,
IEEE Internet Things J.
6
,
5971
(
2019
).
3.
L.
Morawska
,
P. K.
Thai
,
X.
Liu
 et al,
Environ. Int.
116
,
286
(
2018
).
4.
K.
Nellore
and
G. P.
Hancke
,
Sensors
16
,
157
(
2016
).
5.
M.
Mahbub
,
Internet Things
9
,
100161
(
2020
).
6.
R.
Maggiora
,
M.
Saccani
,
D.
Milanesio
, and
M.
Porporato
,
Sci. Rep.
9
,
11964
(
2019
).
7.
H.
Huang
,
M.
Sakhdari
,
M.
Hajizadegan
,
A.
Shahini
,
D.
Akinwande
, and
P.-Y.
Chen
,
Appl. Phys. Lett.
108
,
173503
(
2016
).
8.
L.
Zhu
,
H.
Huang
,
M. M. C.
Cheng
, and
P. Y.
Chen
,
IEEE Trans. Microwave Theory Tech.
68
,
4846
(
2020
).
9.
L.
Zhu
,
M.
Farhat
,
Y.-C.
Chen
,
K. N.
Salama
, and
P.-Y.
Chen
,
IEEE Sens. J.
20
,
12495
(
2020
).
10.
Y.
Duan
,
Y.
Chang
,
J.
Liang
,
H.
Zhang
,
X.
Duan
,
H.
Zhang
,
W.
Pang
, and
M.
Zhang
,
Appl. Phys. Lett.
109
,
263503
(
2016
).
11.
D.
Spirjakin
,
A.
Baranov
, and
S.
Akbari
,
IEEE Sens. J.
18
,
2976
(
2018
).
12.
X.
Gu
,
K.
Wu
, and
S.
Hemour
, in
2020 IEEE International Symposium on Antennas and Propagation and North American Radio Science Meeting
, Montreal, QC, Canada (
IEEE
,
2020
), pp.
1429
1430
.
13.
A.
Lavrenko
,
B.
Litchfield
,
G.
Woodward
, and
S.
Pawson
,
IEEE Microwave Wireless Compon. Lett.
30
,
445
(
2020
).
14.
H.
Huang
,
P.-Y.
Chen
,
C.-H.
Hung
,
R.
Gharpurey
, and
D.
Akinwande
,
Sci. Rep.
6
,
18795
(
2016
).
15.
N.
Tahir
and
G.
Brooker
,
IEEE Sens. J.
15
,
5669
(
2015
).
16.
W.
Shockley
,
Bell Labs Tech. J.
28
,
435
(
1949
).
17.
X.
Gu
,
N. N.
Srinaga
,
L.
Guo
,
S.
Hemour
, and
K.
Wu
,
IEEE Trans. Microwave Theory Tech.
67
,
1675
(
2019
).
18.
X.
Gu
,
L.
Guo
,
S.
Hemour
, and
K.
Wu
, in
2018 IEEE MTT-S International Microwave Workshop Series on 5G Hardware and System Technologies
, Dublin, Ireland (
IEEE
,
2018
), pp
1
3
.
19.
D.
Milanesio
,
M.
Saccani
,
R.
Maggiora
,
D.
Laurino
, and
M.
Porporato
,
Ecol. Evol.
6
,
2170
(
2016
).
20.
X.
Gu
,
W.
Lin
,
S.
Hemour
, and
K.
Wu
,
IEEE Trans. Microwave Theory Tech.
69
,
3413
(
2021
).
21.
J. L.
Hesler
and
T. W.
Crowe
, in
Proceedings of the 18th International Symposium on Space Terahertz Technology
, Pasadena, CA, USA (VDI,
2007
), pp
89
92
.
22.
See https://www.skyworksinc.com/-/media/SkyWorks/Documents/Products/201-300/Surface_Mount_Schottky_Diodes_200041AG.pdf for the datasheet of diodes SMS7630 and SMS7621; accessed March 2,
2021
.
You do not currently have access to this content.