Since the invention of organic light emitting diodes (OLEDs), great research efforts have been dedicated to improving their efficiency and lifetime. For high-brightness applications, tandem OLED structures have advantages because of the lower current densities required to achieve high brightness. With the successful development of highly efficient charge generation layers, high brightness tandem OLEDs are used in displays and lighting. However, the major challenge for tandem OLEDs is the low light extraction efficiency, because about 50% of the light is trapped inside the device as waveguide modes. In this Perspective, we first review the recent works done on light extraction, analyze different waveguide mode extraction structures, and then identify the key factors determining the extraction efficiencies in tandem OLEDs.

1.
H. W.
Chen
,
J. H.
Lee
,
B. Y.
Lin
,
S.
Chen
, and
S. T.
Wu
, “
Liquid crystal display and organic light-emitting diode display : Present status and future perspectives
,”
Light: Sci. Appl.
7
(
3
),
17168
(
2018
).
2.
V. C.
Coffey
, “
The age of OLED displays
,”
Opt. Photonics News
28
(
11
),
34
41
(
2017
).
3.
Q. D.
Ou
,
L.
Zhou
,
Y. Q.
Li
et al, “
Extremely efficient white organic light-emitting diodes for general lighting
,”
Adv. Funct. Mater.
24
(
46
),
7249
7256
(
2014
).
4.
P.
Cipresso
,
I.
Alice
,
C.
Giglioli
,
M. A.
Raya
, and
G.
Riva
, “
The past, present, and future of virtual and augmented reality research: A network and cluster analysis of the literature
,”
Front. Psychol.
9
,
1
20
(
2018
).
5.
Y.-H.
Lee
,
T.
Zhan
, and
S. T.
Wu
, “
Prospects and challenges in augmented reality displays
,”
Virtual Realilty Intell. Hardware
1
(
1
),
10
20
(
2019
).
6.
Y. J.
Song
,
J.
Kim
,
H.
Cho
et al, “
Fibertronic organic light-emitting diodes toward fully addressable, environmentally robust, wearable displays
,”
ACS Nano
14
(
1
),
1133
1140
(
2020
).
7.
J. T.
Smith
,
S.
Member
,
B. A.
Katchman
et al, “
Application of flexible OLED display technology to point-of-care medical diagnostic testing
,”
J. Disp. Technol.
12
(
3
),
273
280
(
2016
).
8.
Y.
Jeon
,
H.
Choi
,
M.
Lim
et al, “
A wearable photobiomodulation patch using a flexible red-wavelength OLED and its in vitro differential cell proliferation effects
,”
Adv. Technol.
3
(
5
),
1700391
(
2018
).
9.
C. W.
Tang
and
S. A.
VanSlyke
, “
Organic electroluminescent diodes
,”
Appl. Phys. Lett.
51
(
12
),
913
915
(
1987
).
10.
S.
Kwon
,
E.-H.
Lee
,
K.
Kim
et al, “
Efficient micro-cavity top emission OLED with optimized Mg:Ag ratio cathode
,”
Opt. Express
25
(
24
),
29906
(
2017
).
11.
S. F.
Wu
,
S. H.
Li
,
Y. K.
Wang
et al, “
White organic LED with a luminous efficacy exceeding 100 l m W−1 without light out-coupling enhancement techniques
,”
Adv. Funct. Mater.
27
(
31
),
1
9
(
2017
).
12.
M.
Zhang
,
W.
Liu
,
C.
Zheng
et al, “
Tricomponent exciplex emitter realizing over 20% external quantum efficiency in organic light-emitting diode with multiple reverse intersystem crossing channels
,”
Adv. Sci.
6
(
14
),
1801938
(
2019
).
13.
C.-Y.
Lu
,
M.
Jiao
,
W.-K.
Lee
et al, “
Achieving above 60% external quantum efficiency in organic light-emitting devices using ITO-free low-index transparent electrode and emitters with preferential horizontal emitting dipoles
,”
Adv. Funct. Mater.
26
(
19
),
3250
3258
(
2016
).
14.
J.
Frischeisen
,
D.
Yokoyama
,
A.
Endo
,
C.
Adachi
, and
W.
Brütting
, “
Increased light outcoupling efficiency in dye-doped small molecule organic light-emitting diodes with horizontally oriented emitters
,”
Org. Electron.
12
(
5
),
809
817
(
2011
).
15.
K. H.
Kim
,
S.
Lee
,
C. K.
Moon
et al, “
Phosphorescent dye-based supramolecules for high-efficiency organic light-emitting diodes
,”
Nat. Commun.
5
,
1
8
(
2014
).
16.
H.
Shin
,
J. H.
Lee
,
C. K.
Moon
,
J. S.
Huh
,
B.
Sim
, and
J. J.
Kim
, “
Sky-blue phosphorescent OLEDs with 34.1% external quantum efficiency using a low refractive index electron transporting layer
,”
Adv. Mater.
28
,
4920
4925
(
2016
).
17.
C.
Fuchs
,
P.-A.
Will
,
M.
Wieczorek
et al, “
Enhanced light emission from top-emitting organic light-emitting diodes by optimizing surface plasmon polariton losses
,”
Phys. Rev. B
92
,
245306
(
2015
).
18.
T.
Lin
,
T.
Chatterjee
,
W.
Tsai
,
W.
Lee
,
M.
Wu
, and
M.
Jiao
, “
Sky-blue organic light emitting diode with 37% external quantum efficiency using thermally activated delayed fluorescence from spiroacridine-triazine hybrid
,”
Adv. Mater.
28
(
32
),
6976
6983
(
2016
).
19.
T.
Watabe
,
R.
Yamaoka
,
N.
Ohsawa
, and
A.
Tomida
, “
Extremely high-efficient OLED achieving external quantum efficiency over 40% by carrier injection layer with super-low refractive index
,” in
SID Symposium Digest of Technical Papers
(
SID
,
2018
), Vol.
49
, pp.
332
335
.
20.
S.
Scholz
,
D.
Kondakov
, and
K.
Leo
, “
Degradation mechanisms and reactions in organic light-emitting devices
,”
Chem. Rev.
115
(
16
),
8449–8503
(
2015
).
21.
K.
Sawabe
,
M.
Imakawa
,
M.
Nakano
,
T.
Yamao
, and
S.
Hotta
, “
Current-confinement structure and extremely high current density in organic light-emitting transistors
,”
Adv. Mater.
24
(
46
),
6141
6146
(
2012
).
22.
N. C.
Giebink
and
S. R.
Forrest
, “
Quantum efficiency roll-off at high brightness in fluorescent and phosphorescent organic light emitting diodes
,”
Phys. Rev. B
77
(
12
),
125215
(
2008
).
23.
C.
Murawski
,
K.
Leo
, and
M. C.
Gather
, “
Efficiency roll-off in organic light-emitting diodes
,”
Adv. Mater.
25
(
47
),
6801
6827
(
2013
).
24.
F.
So
,
J.
Kido
, and
P.
Burrows
, “
Organic light-emitting devices for solid-state lighting introduction: The potential for
,”
MRS Bulletin
33
,
663
669
(
2008
).
25.
Y.
Lin
,
P.
Chen
,
K.
Chen
et al, “
Highly transparent AMOLED for augmented reality applications
,” in
SID Symposium Digest of Technical Papers
(SID,
2018
), pp.
621
623
.
26.
J.
Song
,
H.
Lee
,
E. G.
Jeong
,
K. C.
Choi
, and
S.
Yoo
, “
Organic light-emitting diodes: pushing toward the limits and beyond
,”
Adv. Mater.
32
,
1907539:1
17
(
2020
).
27.
C. W.
Chu
,
C. W.
Chen
,
S. H.
Li
,
E. H. E.
Wu
, and
Y.
Yang
, “
Integration of organic light-emitting diode and organic transistor via a tandem structure
,”
Appl. Phys. Lett.
86
(
25
),
253503
(
2005
)
28.
L. S.
Liao
,
K. P.
Klubek
, and
C. W.
Tang
, “
High-efficiency tandem organic light-emitting diodes
,”
Appl. Phys. Lett.
84
(
2
),
167
(
2008
).
29.
M.
Fung
,
Y.
Li
, and
L.
Liao
, “
Tandem organic light-emitting diodes
,”
Adv. Mater.
28
(
47
),
10381
10408
(
2016
).
30.
P.
Xiao
,
J.
Huang
,
Y.
Yu
, and
B.
Liu
, “
Recent developments in tandem white organic light-emitting diodes
,”
Molecules
24
(
1
),
151
(
2019
).
31.
Q.
Ou
,
L.
Zhou
,
Y.
Li
et al, “
Simultaneously enhancing color spatial uniformity and operational stability with deterministic quasi-periodic nanocone arrays for tandem organic light-emitting diodes
,”
Adv. Opt. Mater.
3
(
1
),
87-94
(
2015
).
32.
Y.
Li
,
M.
Kovac
,
J.
Westphalen
et al, “
Tailor-made nanostructures bridging chaos and order for highly efficient white organic light-emitting diodes
,”
Nat. Commun.
10
,
2972
(
2019
).
33.
K.
Han
,
K.
Kim
,
Y.
Han
et al, “
Highly efficient tandem white OLED using a hollow structure
,”
Adv. Mater. Interfaces
7
(
9
),
1901509
(
2020
).
34.
M. C.
Gather
and
S.
Reineke
, “
Recent advances in light outcoupling from white organic light-emitting diodes
,”
J. Photon Energy
5
(
1
),
057607
(
2015
).
35.
A.
Salehi
,
X.
Fu
,
D.
Shin
, and
F.
So
, “
Recent advances in OLED optical design
,”
Adv. Funct. Mater.
29
,
1808803
(
2019
).
36.
W. L.
Barnes
,
A.
Dereux
, and
T. W.
Ebbesen
, “
Surface plaston subwavelength optics
,”
Nature
424
(
6950
),
824
830
(
2003
).
37.
B. J.
Scholz
,
J.
Frischeisen
,
A.
Jaeger
,
D. S.
Setz
,
T. G.
Reusch
, and
W.
Brütting
, “
Extraction of surface plasmons in organic light-emitting diodes via high-index coupling
,”
Opt. Express
20
(
S2
),
A205
(
2012
).
38.
T.-Y.
Cho
,
C.-L.
Lin
, and
C.-C.
Wu
, “
Microcavity two-unit tandem organic light-emitting devices having a high efficiency
,”
Appl. Phys. Lett.
88
(
11
),
111106
(
2006
).
39.
V. B.
Khalfin
,
G.
Gu
, and
P. E.
Burrows
, “
Weak microcavity effects in organic light-emitting devices
,”
Phys. Rev. B
58
(
7
),
3730
3740
(
1998
).
40.
S.
Hofmann
,
M.
Thomschke
,
P.
Freitag
,
M.
Furno
,
B.
Lüssem
, and
K.
Leo
, “
Top-emitting organic light-emitting diodes: Influence of cavity design
,”
Appl. Phys. Lett.
97
,
253308
(
2010
).
41.
J.
Lee
,
N.
Chopra
, and
F.
So
, “
Cavity effects on light extraction in organic light emitting devices
,”
Appl. Phys. Lett.
92
,
033303
(
2008
).
42.
J.
Lee
,
T. H.
Han
,
M. H.
Park
et al, “
Synergetic electrode architecture for efficient graphene-based flexible organic light-emitting diodes
,”
Nat. Commun.
7
,
1
9
(
2016
).
43.
H.
Benisty
,
H. D.
Neve
, and
C.
Weisbuch
, “
Impact of planar microcavity effects on light extraction—Part I: Basic concepts and analytical trends
,”
IEEE J. Quantum Electron.
34
(
9
),
1612
1631
(
1998
).
44.
W.
Brütting
,
J.
Frischeisen
,
T. D.
Schmidt
,
B. J.
Scholz
, and
C.
Mayr
, “
Device efficiency of organic light-emitting diodes: Progress by improved light outcoupling
,”
Phys. Status Solidi A
210
(
1
),
44
65
(
2013
).
45.
J. M.
Lupton
,
B. J.
Matterson
,
I. D. W.
Samuel
,
M. J.
Jory
, and
W. L.
Barnes
, “
Bragg scattering from periodically microstructured light emitting diodes
,”
Appl. Phys. Lett.
77
(
21
),
3340
3342
(
2000
).
46.
W.
Youn
,
J.
Lee
,
M.
Xu
,
R.
Singh
, and
F.
So
, “
Corrugated sapphire substrates for organic light-emitting diode light extraction
,”
ACS Appl. Mater. Interfaces
7
(
17
),
8974
8978
(
2015
).
47.
X.
Fu
,
Y.
Mehta
, and
Y.-A.
Chen
, “
Directional polarized light emission from thin-film light-emitting diodes
,”
Adv. Mater.
33
(
9
),
2006801
(
2021
).
48.
P.
Will
,
M.
Schmidt
,
K.
Eckhardt
et al, “
Efficiency of light outcoupling structures in organic light-emitting diodes: 2D TiO2 array as a model system
,”
Adv. Funct. Mater.
29
(
20
)
1901748
(
2019
).
49.
N.
Danz
,
D.
Michaelis
,
C.
Wächter
,
N.
Danz
,
D.
Michaelis
, and
C.
Wächter
, “
Light extraction from OLEDs: the waveguide perspective Light exctraction from OLEDs—The waveguide perspective
,”
Proc. SPIE
6475
,
64750J
(
2007
).
50.
Y. S.
Shim
,
J. H.
Hwang
,
C. H.
Park
,
S.-G.
Jung
,
Y. W.
Park
, and
B.-K.
Ju
, “
An extremely low-index photonic crystal layer for enhanced light extraction from organic light-emitting diodes
,”
Nanoscale
8
(
7
),
4113
4120
(
2016
).
51.
T. H. P.
Chang
,
M.
Mankos
,
K. Y.
Lee
, and
L. P.
Muray
, “
Multiple electron-beam lithography
,”
Microelectron. Eng.
57–58
,
117
135
(
2001
).
52.
S.
Maruo
,
O.
Nakamura
, and
S.
Kawata
, “
Three-dimensional microfabrication with two-photon-absorbed photopolymerization
,”
Opt. Lett.
22
(
2
),
132
134
(
1997
).
53.
C. V.
Shank
and
R. V.
Schmidt
, “
Optical technique for producing 0.1-μ periodic surface structures
,”
Appl. Phys. Lett.
23
(
3
),
154
155
(
1973
).
54.
H. I.
Smith
, “
Low cost nanolithography with nanoaccuracy
,”
Physica E
11
(
2–3
),
104
109
(
2001
).
55.
A.
Bagal
and
C.-H.
Chang
, “
Fabrication of subwavelength periodic nanostructures using liquid immersion Lloyd's mirror interference lithography
,”
Opt Lett.
38
(
14
),
2531
2534
(
2013
).
56.
Y.-A.
Chen
,
S. V.
Naidu
,
Z.
Luo
, and
C.-H.
Chang
, “
Enhancing optical transmission of multilayer composites using interfacial nanostructures
,”
J. Appl. Phys.
126
(
6
),
63101
(
2019
).
57.
M.
Campbell
,
D. N.
Sharp
,
M. T.
Harrison
,
R. G.
Denning
, and
A. J.
Turberfield
, “
Fabrication of photonic crystals for the visible spectrum by holographic lithography
,”
Nature
404
(
6773
),
53
56
(
2000
).
58.
N.
Denkov
,
O.
Velev
,
P.
Kralchevski
,
I.
Ivanov
,
H.
Yoshimura
, and
K.
Nagayama
, “
Mechanism of formation of two-dimensional crystals from latex particles on substrates
,”
Langmuir
8
(
12
),
3183
3190
(
1992
).
59.
N. D.
Denkov
,
O. D.
Velev
,
P. A.
Kralchevsky
,
I. B.
Ivanov
,
H.
Yoshimura
, and
K.
Nagayama
, “
Two-dimensional crystallization
,”
Nature
361
(
6407
),
26
(
1993
).
60.
A.
van Blaaderen
,
R.
Ruel
, and
P.
Wiltzius
, “
Template-directed colloidal crystallization
,”
Nature
385
(
6614
),
321
324
(
1997
).
61.
W. H.
Koo
,
W.
Youn
,
P.
Zhu
,
X. H.
Li
,
N.
Tansu
, and
F.
So
, “
Light extraction of organic light emitting diodes by defective hexagonal-close-packed array
,”
Adv. Funct. Mater.
22
(
16
),
3454
3459
(
2012
).
62.
X.
Li
and
J. F.
Gilchrist
, “
Large-area nanoparticle films by continuous automated Langmuir–Blodgett assembly and deposition
,”
Langmuir
32
(
5
),
1220
1226
(
2016
).
63.
M.
Parchine
,
J.
McGrath
,
M.
Bardosova
, and
M. E.
Pemble
, “
Large area 2D and 3D colloidal photonic crystals fabricated by a roll-to-roll Langmuir-Blodgett method
,”
Langmuir
32
(
23
),
5862
5869
. (
2016
).
64.
I.-T.
Chen
,
E.
Schappell
,
X.
Zhang
, and
C.-H.
Chang
, “
Continuous roll-to-roll patterning of three-dimensional periodic nanostructures
,”
Microsyst. Nanoeng.
6
(
1
),
22
(
2020
).
65.
K.
Tanaka
,
A.
Takahara
, and
T.
Kajiyama
, “
Film thickness dependence of the surface structure of immiscible polystyrene/poly(methyl methacrylate) blends
,”
Macromolecules
29
(
9
),
3232
3239
(
1996
).
66.
B.
Jiao
,
Y.
Yu
,
Y.
Dai
,
X.
Hou
, and
Z.
Wu
, “
Improvement of light extraction in organic light-emitting diodes using a corrugated microcavity
,”
Opt. Express
23
(
4
),
4055
(
2015
).
67.
J. W.
Shin
,
D. H.
Cho
,
J.
Moon
et al, “
Random nano-structures as light extraction functionals for organic light-emitting diode applications
,”
Org. Electron.
15
(
1
),
196
202
(
2014
).
68.
W. H.
Koo
,
S. M.
Jeong
,
F.
Araoka
et al, “
Light extraction from organic light-emitting diodes enhanced by spontaneously formed buckles
,”
Nat. Photonics
4
(
4
),
222
226
(
2010
).
69.
S.
Jeon
,
S.
Lee
,
K. H.
Han
et al, “
High-quality white OLEDs with comparable efficiencies to LEDs
,”
Adv. Opt. Mater.
6
(
8
),
1701349
(
2018
).
70.
Y.
Qu
,
M.
Slootsky
, and
S. R.
Forrest
, “
Enhanced light extraction from organic light-emitting devices using a sub-anode grid
,”
Nat. Photonics
9
(
11
),
758
763
(
2015
).
71.
H.
Chang
,
J.
Lee
, and
S.
Hofmann
, “
Nano-particle based scattering layers for optical efficiency enhancement of organic light-emitting diodes and organic solar cells
,”
J. Appl.
113
(
20
),
204502
(
2013
).
72.
S.
Jeon
,
J. H.
Lee
,
J. H.
Jeong
et al, “
Vacuum nanohole array embedded phosphorescent organic light emitting diodes
,”
Sci. Rep.
5
,
8685
(
2015
).
73.
J. B.
Preinfalk
,
T.
Eiselt
,
T.
Wehlus
et al, “
Large-area screen-printed internal extraction layers for organic light-emitting diodes
,”
ACS Photonics
4
(
4
),
928
933
(
2017
).
74.
E.
Kim
,
H.
Cho
,
K.
Kim
et al, “
A facile route to efficient, low-cost flexible organic light-emitting diodes: Utilizing the high refractive index and built-in scattering properties of industrial-grade PEN substrates
,”
Adv. Mater.
27
(
9
),
1624
1631
(
2015
).
75.
P.
Giusto
,
D.
Cruz
,
T.
Heil
et al, “
Shine bright like a diamond: New light on an old polymeric semiconductor
,”
Adv. Mater.
32
(
10
),
1908140
(
2020
).
76.
D. H.
Kim
,
W.
Jang
,
K.
Choi
et al, “
One-step vapor-phase synthesis of transparent high refractive index sulfur-containing polymers
,”
Sci. Adv.
6
(
28
),
eabb5320
(
2020
).
77.
D.
Yokoyama
,
K.
Otani
,
T.
Nakayama
, and
J.
Kido
, “
Wide-range refractive index control of organic semiconductor films toward advanced optical design of organic optoelectronic devices
,”
Adv. Mater.
24
(
47
),
6368
6373
(
2012
).
78.
S.
Jeon
,
J.-W.
Kang
,
H.-D.
Park
et al, “
Ultraviolet nanoimprinted polymer nanostructure for organic light emitting diode application
,”
Appl. Phys. Lett.
92
(
22
),
223307
(
2008
).
79.
K.
Hong
,
H. K.
Yu
,
I.
Lee
,
K.
Kim
,
S.
Kim
, and
J.-L.
Lee
, “
Enhanced light out-coupling of organic light-emitting diodes: spontaneously formed nanofacet-structured MgO as a refractive index modulation layer
,”
Adv. Mater.
22
(
43
),
4890
4894
(
2010
).
80.
K.
Lee
,
J.-W.
Shin
,
J.-H.
Park
et al, “
A light scattering layer for internal light extraction of organic light-emitting diodes based on silver nanowires
,”
ACS Appl. Mater. Interfaces
8
(
27
),
17409
17415
(
2016
).
81.
J.
Song
,
K.
Kim
,
E.
Kim
et al, “
Lensfree OLEDs with over 50% external quantum efficiency via external scattering and horizontally oriented emitters
,”
Nat. Commun.
9
,
3207
(
2018
).
82.
J.
Kim
,
Y.
Qu
,
C.
Coburn
, and
S. R.
Forrest
, “
Efficient outcoupling of organic light-emitting devices using a light-scattering dielectric layer
,”
ACS Photonics
5
(
8
),
3315
3321
. (
2018
).
83.
Y.
Sato
,
S.
Sobu
,
K.
Nakabayashi
,
S.
Samitsu
, and
H.
Mori
, “
Highly transparent benzothiazole-based block and random copolymers with high refractive indices by RAFT polymerization
,”
ACS Appl. Polym. Mater.
2
(
8
),
3205
3214
(
2020
).
84.
Y.
Qu
,
J.
Kim
,
C.
Coburn
, and
S. R.
Forrest
, “
Efficient, non-intrusive outcoupling in organic light emitting devices using embedded microlens arrays
,”
ACS Photonics
5
,
2453
2456
(
2018
).
85.
S.
Reineke
,
F.
Lindner
,
G.
Schwartz
, et al, “
White organic light-emitting diodes with fluorescent tube efficiency
,”
Nature
459
(
7244
),
234
238
(
2009
).
86.
M.
Thomschke
,
S.
Reineke
,
B.
Lüssem
, and
K.
Leo
, “
Highly efficient white top-emitting organic light-emitting diodes comprising laminated microlens films
,”
Nano Lett.
12
(
1
),
424
428
(
2012
).
87.
J. B.
Kim
,
J. H.
Lee
,
C. K.
Moon
,
K. H.
Kim
, and
J. J.
Kim
, “
Highly enhanced light extraction from organic light emitting diodes with little image blurring and good color stability
,”
Org. Electron.
17
,
115
120
(
2015
).
88.
Y.
Qu
,
C.
Coburn
,
D.
Fan
, and
S. R.
Forrest
, “
Elimination of plasmon losses and enhanced light extraction of top-emitting organic light-emitting devices using a reflective subelectrode grid
,”
ACS Photonics
4
(
2
),
363
368
(
2017
).
You do not currently have access to this content.