Despite the practical importance of Ba-based perovskite dielectrics in microwave applications, the literature does not consistently agree which structural phases form. To provide insight, we use density functional methods to calculate Gibbs energies of structural polymorphs of 1:1 ordered Ba-based perovskites. Ba(In1/2Ta1/2)O3 has a ground state Fm3¯m cubic phase at 0 K, while Ba(Y1/2Ta1/2)O3, Ba(Gd1/2Ta1/2)O3, and Ba(Nd1/2Ta1/2)O3 form lower symmetry ground state phases. With increasing temperature, the structural phases change from monoclinic I2/m to trigonal R3¯ and finally to cubic Fm3¯m. For the zero and higher temperature conditions, the energy differences between the ground state and next higher energetic polymorphs are below 50 meV/atom and arise predominantly from changes in the octahedral tilts. The resulting coexistence of two or more polymorphs at room temperature and similar x-ray diffraction patterns may explain why so many papers report different phases for the same compound.

1.
S. B.
Cohn
,
IEEE Trans. Microwave Theory Tech.
16
,
218
227
(
1968
).
2.
A.
Petosa
and
A.
Ittipiboon
,
IEEE Antennas Propag. Mag.
52
,
91
116
(
2010
).
3.
P.
Mohanan
and
S.
Mridula
,
Applications of Dielectric Resonators
(
John Wiley & Sons, Inc
.,
Hoboken, NJ
,
2017
).
4.
I. M.
Reaney
and
D.
Iddles
,
J. Am. Ceram. Soc.
89
(
7
),
2063
2072
(
2006
).
5.
H.
Hughes
and
D. M.
Iddles
,
Appl. Phys. Lett.
79
,
2952
2954
(
2001
).
6.
I. M.
Reaney
and
R.
Ubic
,
Ferroelectrics
228
,
23
38
(
1999
).
7.
M. T.
Sebastian
,
Dielectric Materials for Wireless Communication
(
Elsevier
,
Linacre House, Oxford, UK
,
2008
).
8.
G.
Kresse
and
J.
Furthmüller
,
Comput. Mater. Sci.
6
,
15
50
(
1996
).
9.
G.
Kresse
and
J.
Furthmüller
,
Phys. Rev. B
54
,
11169
(
1996
).
10.
J. P.
Perdew
,
A.
Ruzsinszky
,
G. I.
Csonka
,
O. A.
Vydrov
,
G. E.
Scuseria
,
L. A.
Constantin
,
X.
Zhou
, and
K.
Burke
,
Phys. Rev. Lett.
100
,
136406
(
2008
).
11.
L.
Schimka
,
J.
Harl
, and
G.
Kreese
,
J. Chem. Phys.
134
,
024116
(
2011
).
12.
K.
Momma
and
F.
Izumi
,
J. Appl. Crystallogr.
44
,
1272
1276
(
2011
).
13.
A.
Togo
and
I.
Tanaka
,
Scr. Mater.
108
,
1
5
(
2015
).
14.
T.
Tojo
,
H.
Kawaji
, and
T.
Atake
,
Solid State Ionics
118
,
349
353
(
1999
).
15.
C. J.
Howard
,
B. J.
Kennedy
, and
P. M.
Woodward
,
Acta Crystallogr., Sect. B
59
,
463
471
(
2003
).
16.
A. M.
Glazer
,
Acta Crystallogr., Sect. B
28
,
3384
3392
(
1972
).
17.
K.
Prasad
,
Priyanka
,
K. P.
Chandra
, and
A. R.
Kulkarni
,
J. Non-Cryst. Solids
357
,
1209
1217
(
2011
).
18.
T.
Fuji
,
H.
Soto
,
S.
Ito
, and
G. L.
Messing
,
Solid State Ionics
172
(
1–4
),
485
489
(
2004
).
19.
I.
Gregoria
,
J.
Petzelt
,
J.
Pokorny
,
V.
Vorlicek
,
Z.
Zikmund
,
Z.
Zurmuhlen
, and
N.
Setter
,
Solid State Commun.
94
,
899
903
(
1995
).
20.
R.
Zurmühlen
,
J.
Petzelt
,
S.
Kamba
,
V.
Voitsekhovskii
,
E.
Colla
, and
N.
Setter
,
J. Appl. Phys.
77
,
5341
5350
(
1995
).
21.
Y.
Doi
and
Y.
Hinatsu
,
J. Phys.
13
,
4191
4202
(
2001
).
22.
P. J.
Saines
,
B. J.
Kennedy
, and
M. M.
Elcombe
,
J. Solid State Chem.
180
,
401
409
(
2007
).
23.
L.
Khalam
,
P.
Anjana
, and
M. T.
Sebastian
,
Int. J. Appl. Ceram. Technol.
6
,
571
580
(
2009
).
24.
M. G.
Evans
and
M.
Polanyi
,
J. Chem. Soc., Faraday Trans.
32
,
1333
1360
(
1936
).
25.
E.
Dougherty
,
D.
Dougherty
, and
E.
Anslyn
,
Modern Physical Organic Chemistry
(
University Science Books
,
Sausalito, CA
,
2006
).

Supplementary Material

You do not currently have access to this content.