By means of an ab initio investigation, exploiting many-body perturbation theory approaches on top of ground-state density functional theory calculations, we disclose the impact of the electronic correlation on the band structure and optical properties of a class of recently synthesized Pb-free 2D-layered halide perovskites, namely, (BA)4AgBiBr8 and (BA)2CsAgBiBr7. We observe strong out-of-plane excitonic dipoles characterizing the optical spectra, a result that suggests the potential applicability of these layered hybrid materials in photonics and plasmonics, where the perpendicular field direction plays a relevant role.
References
1.
A.
Kojima
, K.
Teshima
, Y.
Shirai
, and T.
Miyasaka
, “Organometal halide perovskites as visible-light sensitizers for photovoltaic cells
,” J. Am. Chem. Soc.
131
, 6050
–6051
(2009
).2.
I. C.
Smith
, E. T.
Hoke
, D.
Solis-Ibarra
, M. D.
McGehee
, and H. I.
Karunadasa
, “A layered hybrid perovskite solar-cell absorber with enhanced moisture stability
,” Angew. Chem.
126
, 11414
–11417
(2014
).3.
D. B.
Mitzi
, C.
Feild
, W.
Harrison
, and A.
Guloy
, “Conducting tin halides with a layered organic-based perovskite structure
,” Nature
369
, 467
–469
(1994
).4.
D. B.
Mitzi
, “Synthesis, crystal structure, and optical and thermal properties of (C4H9NH3)2MI4 (M = Ge, Sn, Pb)
,” Chem. Mater.
8
, 791
–800
(1996
).5.
C. R.
Kagan
, D. B.
Mitzi
, and C. D.
Dimitrakopoulos
, “Organic-inorganic hybrid materials as semiconducting channels in thin-film field-effect transistors
,” Science
286
, 945
–947
(1999
).6.
D. H.
Cao
, C. C.
Stoumpos
, O. K.
Farha
, J. T.
Hupp
, and M. G.
Kanatzidis
, “2D homologous perovskites as light-absorbing materials for solar cell applications
,” J. Am. Chem. Soc.
137
, 7843
–7850
(2015
).7.
C. C.
Stoumpos
, D. H.
Cao
, D. J.
Clark
, J.
Young
, J. M.
Rondinelli
, J. I.
Jang
, J. T.
Hupp
, and M. G.
Kanatzidis
, “Ruddlesden–popper hybrid lead iodide perovskite 2D homologous semiconductors
,” Chem. Mater.
28
, 2852
–2867
(2016
).8.
G.
Giorgi
and K.
Yamashita
, “Alternative, lead-free, hybrid organic–inorganic perovskites for solar applications: A dft analysis
,” Chem. Lett.
44
, 826
–828
(2015
).9.
G.
Volonakis
, M. R.
Filip
, A. A.
Haghighirad
, N.
Sakai
, B.
Wenger
, H. J.
Snaith
, and F.
Giustino
, “Lead-free halide double perovskites via heterovalent substitution of noble metals
,” J. Phys. Chem. Lett.
7
, 1254
–1259
(2016
).10.
G.
Giorgi
, K.
Yamashita
, and M.
Palummo
, “Two-dimensional optical excitations in the mixed-valence Cs2Au2I6 fully inorganic double perovskite
,” J. Mater. Chem. C
6
, 10197
–10201
(2018
).11.
G.
Volonakis
, A. A.
Haghighirad
, R. L.
Milot
, W. H.
Sio
, M. R.
Filip
, B.
Wenger
, M. B.
Johnston
, L. M.
Herz
, H. J.
Snaith
, and F.
Giustino
, “Cs2InAgCl6: A new lead-free halide double perovskite with direct band gap
,” J. Phys. Chem. Lett.
8
, 772
–778
(2017
).12.
M.
Palummo
, E.
Berrios
, D.
Varsano
, and G.
Giorgi
, “Optical properties of lead-free double perovskites by ab initio excited-state methods
,” ACS Energy Lett.
5
, 457
–463
(2020
).13.
M.
Palummo
, D.
Varsano
, E.
Berríos
, K.
Yamashita
, and G.
Giorgi
, “Halide pb-free double–perovskites: Ternary vs. quaternary stoichiometry
,” Energies
13
, 3516
(2020
).14.
M. D.
Smith
, B. A.
Connor
, and H. I.
Karunadasa
, “Tuning the luminescence of layered halide perovskites
,” Chem. Rev.
119
, 3104
–3139
(2019
).15.
B. A.
Connor
, L.
Leppert
, M. D.
Smith
, J. B.
Neaton
, and H. I.
Karunadasa
, “Layered halide double perovskites: Dimensional reduction of Cs2AgBiBr6
,” J. Am. Chem. Soc.
140
, 5235
–5240
(2018
).16.
G.
Giorgi
, K.
Yamashita
, and M.
Palummo
, “Nature of the electronic and optical excitations of ruddlesden–popper hybrid organic–inorganic perovskites: he role of the many-body interactions
,” J. Phys. Chem. Lett.
9
, 5891
–5896
(2018
).17.
Y.
Li
, T.
Yang
, Z.
Xu
, X.
Liu
, X.
Huang
, S.
Han
, Y.
Liu
, M.
Li
, J.
Luo
, and Z.
Sun
, “Dimensional reduction of Cs2AgBiBr6: A 2D hybrid double perovskite with strong polarization sensitivity
,” Angew. Chem.
132
, 3457
–3461
(2020
).18.
M. S.
Prete
, O.
Pulci
, and F.
Bechstedt
, “Strong in- and out-of-plane excitons in two-dimensional InN nanosheets
,” Phys. Rev. B
98
, 235431
(2018
).19.
M.
Brotons-Gisbert
, R.
Proux
, R.
Picard
, D.
Andres-Penares
, A.
Branny
, A.
Molina-Sánchez
, J. F.
Sánchez-Royo
, and B. D.
Gerardot
, “Out-of-plane orientation of luminescent excitons in two-dimensional indium selenide
,” Nat. Commun.
10
, 3913
(2019
).20.
I.
Guilhon
, M.
Marques
, L. K.
Teles
, M.
Palummo
, O.
Pulci
, S.
Botti
, and F.
Bechstedt
, “Out-of-plane excitons in two-dimensional crystals
,” Phys. Rev. B
99
, 161201
(2019
).21.
Z.
Li
, B.
Xu
, D.
Liang
, and A.
Pan
, “Polarization-dependent optical properties and optoelectronic devices of 2D materials
,” Research
2020
, 5464258
.22.
A.
Fieramosca
, L.
De Marco
, M.
Passoni
, L.
Polimeno
, A.
Rizzo
, B. L.
Rosa
, G.
Cruciani
, L.
Dominici
, M.
De Giorgi
, G.
Gigli
et al, “Tunable out-of-plane excitons in 2D single-crystal perovskites
,” ACS Photonics
5
, 4179
–4185
(2018
).23.
G.
Kresse
and J.
Hafner
, “Ab initio molecular dynamics for open-shell transition metals
,” Phys. Rev. B
48
, 13115
–13118
(1993
).24.
G.
Kresse
and J.
Hafner
, “Ab initio molecular-dynamics simulation of the liquid-metal–amorphous-semiconductor transition in germanium
,” Phys. Rev. B
49
, 14251
–14269
(1994
).25.
G.
Kresse
and J.
Furthmüller
, “Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set
,” Comput. Mater. Sci.
6
, 15
– 50
(1996
).26.
G.
Kresse
and J.
Furthmüller
, “Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set
,” Phys. Rev. B
54
, 11169
–11186
(1996
).27.
P.
Giannozzi
, S.
Baroni
, N.
Bonini
, M.
Calandra
, R.
Car
, C.
Cavazzoni
, D.
Ceresoli
, G. L.
Chiarotti
, M.
Cococcioni
, I.
Dabo
, A.
Dal Corso
, S.
de Gironcoli
, S.
Fabris
, G.
Fratesi
, R.
Gebauer
, U.
Gerstmann
, C.
Gougoussis
, A.
Kokalj
, M.
Lazzeri
, L.
Martin-Samos
, N.
Marzari
, F.
Mauri
, R.
Mazzarello
, S.
Paolini
, A.
Pasquarello
, L.
Paulatto
, C.
Sbraccia
, S.
Scandolo
, G.
Sclauzero
, A. P.
Seitsonen
, A.
Smogunov
, P.
Umari
, and R. M.
Wentzcovitch
, “QUANTUM ESPRESSO: A modular and open-source software project for quantum simulations of materials
,” J. Phys.: Condens. Matter
21
, 395502
(2009
).28.
P.
Giannozzi
, O.
Andreussi
, T.
Brumme
, O.
Bunau
, M. B.
Nardelli
, M.
Calandra
, R.
Car
, C.
Cavazzoni
, D.
Ceresoli
, M.
Cococcioni
, N.
Colonna
, I.
Carnimeo
, A. D.
Corso
, S.
de Gironcoli
, P.
Delugas
, R. A.
DiStasio
, Jr., A.
Ferretti
, A.
Floris
, G.
Fratesi
, G.
Fugallo
, R.
Gebauer
, U.
Gerstmann
, F.
Giustino
, T.
Gorni
, J.
Jia
, M.
Kawamura
, H.-Y.
Ko
, A.
Kokalj
, E.
Küçükbenli
, M.
Lazzeri
, M.
Marsili
, N.
Marzari
, F.
Mauri
, N. L.
Nguyen
, H.-V.
Nguyen
, A. O.
de-la Roza
, L.
Paulatto
, S.
Poncé
, D.
Rocca
, R.
Sabatini
, B.
Santra
, M.
Schlipf
, A. P.
Seitsonen
, A.
Smogunov
, I.
Timrov
, T.
Thonhauser
, P.
Umari
, N.
Vast
, X.
Wu
, and S.
Baroni
, “Advanced capabilities for materials modelling with Quantum ESPRESSO
,” J. Phys.: Condens. Matter
29
, 465901
(2017
).29.
A.
Marini
, C.
Hogan
, M.
Grüning
, and D.
Varsano
, “Yambo: An ab initio tool for excited state calculations
,” Comput. Phys. Commun.
180
, 1392
– 1403
(2009
).30.
D.
Sangalli
, A.
Ferretti
, H.
Miranda
, C.
Attaccalite
, I.
Marri
, E.
Cannuccia
, P.
Melo
, M.
Marsili
, F.
Paleari
, A.
Marrazzo
, G.
Prandini
, P.
Bonfà
, M. O.
Atambo
, F.
Affinito
, M.
Palummo
, A.
Molina-Sánchez
, C.
Hogan
, M.
Grüning
, D.
Varsano
, and A.
Marini
, “Many-body perturbation theory calculations using the yambo code
,” J. Phys.: Condens. Matter
31
, 325902
(2019
).31.
G.
Strinati
, H. J.
Mattausch
, and W.
Hanke
, “Dynamical aspects of correlation corrections in a covalent crystal
,” Phys. Rev. B
25
, 2867
–2888
(1982
).32.
G.
Strinati
, “Application of the Green's functions method to the study of the optical properties of semiconductors
,” Riv. Nuovo Cimento
11
, 1
–86
(1988
).33.
W.
Hanke
and L. J.
Sham
, “Dielectric response in the Wannier representation: Application to the optical spectrum of diamond
,” Phys. Rev. Lett.
33
, 582
–585
(1974
).34.
W.
Hanke
and L. J.
Sham
, “Many-particle effects in the optical spectrum of a semiconductor
,” Phys. Rev. B
21
, 4656
–4673
(1980
).35.
G.
Onida
, L.
Reining
, and A.
Rubio
, “Electronic excitations: Density-functional versus many-body Green's-function approaches
,” Rev. Mod. Phys.
74
, 601
(2002
).36.
M.
Marsili
, A.
Molina-Sánchez
, M.
Palummo
, D.
Sangalli
, and A.
Marini
, “Spinorial formulation of the GW-BSE equations and spin properties of excitons in two-dimensional transition metal dichalcogenides
,” Phys. Rev. B
103
, 155152
(2021
).37.
R.
Godby
and R.
Needs
, “Metal-insulator transition in Kohn–Sham theory and quasiparticle theory
,” Phys. Rev. Lett.
62
, 1169
(1989
).38.
I. A.
Sarsari
, C.
Pemmaraju
, H.
Salamati
, and S.
Sanvito
, “Many-body quasiparticle spectrum of co-doped ZnO: A GW perspective
,” Phys. Rev. B
87
, 245118
(2013
).39.
P.
Umari
, E.
Mosconi
, and F.
De Angelis
, “Relativistic GW calculations on CH3NH3PbI3 and CH3NH3SnI3 perovskites for solar cell applications
,” Sci. Rep.
4
, 4467
(2015
).40.
G.
Giorgi
, M.
Van Schilfgaarde
, A.
Korkin
, and K.
Yamashita
, “On the chemical origin of the gap bowing in (GaAs)Ge2x alloys: A combined DFT–QSGW study
,” Nanoscale Res. Lett.
5
, 469
–477
(2010
).41.
M. R.
Filip
and F.
Giustino
, “GW quasiparticle band gap of the hybrid organic-inorganic perovskite CH3NH3PbI3: Effect of spin-orbit interaction, semicore electrons, and self-consistency
,” Phys. Rev. B
90
, 245145
(2014
).42.
S.
Dancoff
, “Non-adiabatic meson theory of nuclear forces
,” Phys. Rev.
78
, 382
(1950
).43.
R.-I.
Biega
, M. R.
Filip
, L.
Leppert
, and J. B.
Neaton
, “Chemically localized resonant excitons in silver–pnictogen halide double perovskites
,” J. Phys. Chem. Lett.
12
, 2057
–2063
(2021
).44.
M.
Palummo
and G.
Giorgi
, private communications (2020
).© 2021 Author(s). Published under an exclusive license by AIP Publishing.
2021
Author(s)
You do not currently have access to this content.