By means of an ab initio investigation, exploiting many-body perturbation theory approaches on top of ground-state density functional theory calculations, we disclose the impact of the electronic correlation on the band structure and optical properties of a class of recently synthesized Pb-free 2D-layered halide perovskites, namely, (BA)4AgBiBr8 and (BA)2CsAgBiBr7. We observe strong out-of-plane excitonic dipoles characterizing the optical spectra, a result that suggests the potential applicability of these layered hybrid materials in photonics and plasmonics, where the perpendicular field direction plays a relevant role.

1.
A.
Kojima
,
K.
Teshima
,
Y.
Shirai
, and
T.
Miyasaka
, “
Organometal halide perovskites as visible-light sensitizers for photovoltaic cells
,”
J. Am. Chem. Soc.
131
,
6050
6051
(
2009
).
2.
I. C.
Smith
,
E. T.
Hoke
,
D.
Solis-Ibarra
,
M. D.
McGehee
, and
H. I.
Karunadasa
, “
A layered hybrid perovskite solar-cell absorber with enhanced moisture stability
,”
Angew. Chem.
126
,
11414
11417
(
2014
).
3.
D. B.
Mitzi
,
C.
Feild
,
W.
Harrison
, and
A.
Guloy
, “
Conducting tin halides with a layered organic-based perovskite structure
,”
Nature
369
,
467
469
(
1994
).
4.
D. B.
Mitzi
, “
Synthesis, crystal structure, and optical and thermal properties of (C4H9NH3)2MI4 (M = Ge, Sn, Pb)
,”
Chem. Mater.
8
,
791
800
(
1996
).
5.
C. R.
Kagan
,
D. B.
Mitzi
, and
C. D.
Dimitrakopoulos
, “
Organic-inorganic hybrid materials as semiconducting channels in thin-film field-effect transistors
,”
Science
286
,
945
947
(
1999
).
6.
D. H.
Cao
,
C. C.
Stoumpos
,
O. K.
Farha
,
J. T.
Hupp
, and
M. G.
Kanatzidis
, “
2D homologous perovskites as light-absorbing materials for solar cell applications
,”
J. Am. Chem. Soc.
137
,
7843
7850
(
2015
).
7.
C. C.
Stoumpos
,
D. H.
Cao
,
D. J.
Clark
,
J.
Young
,
J. M.
Rondinelli
,
J. I.
Jang
,
J. T.
Hupp
, and
M. G.
Kanatzidis
, “
Ruddlesden–popper hybrid lead iodide perovskite 2D homologous semiconductors
,”
Chem. Mater.
28
,
2852
2867
(
2016
).
8.
G.
Giorgi
and
K.
Yamashita
, “
Alternative, lead-free, hybrid organic–inorganic perovskites for solar applications: A dft analysis
,”
Chem. Lett.
44
,
826
828
(
2015
).
9.
G.
Volonakis
,
M. R.
Filip
,
A. A.
Haghighirad
,
N.
Sakai
,
B.
Wenger
,
H. J.
Snaith
, and
F.
Giustino
, “
Lead-free halide double perovskites via heterovalent substitution of noble metals
,”
J. Phys. Chem. Lett.
7
,
1254
1259
(
2016
).
10.
G.
Giorgi
,
K.
Yamashita
, and
M.
Palummo
, “
Two-dimensional optical excitations in the mixed-valence Cs2Au2I6 fully inorganic double perovskite
,”
J. Mater. Chem. C
6
,
10197
10201
(
2018
).
11.
G.
Volonakis
,
A. A.
Haghighirad
,
R. L.
Milot
,
W. H.
Sio
,
M. R.
Filip
,
B.
Wenger
,
M. B.
Johnston
,
L. M.
Herz
,
H. J.
Snaith
, and
F.
Giustino
, “
Cs2InAgCl6: A new lead-free halide double perovskite with direct band gap
,”
J. Phys. Chem. Lett.
8
,
772
778
(
2017
).
12.
M.
Palummo
,
E.
Berrios
,
D.
Varsano
, and
G.
Giorgi
, “
Optical properties of lead-free double perovskites by ab initio excited-state methods
,”
ACS Energy Lett.
5
,
457
463
(
2020
).
13.
M.
Palummo
,
D.
Varsano
,
E.
Berríos
,
K.
Yamashita
, and
G.
Giorgi
, “
Halide pb-free double–perovskites: Ternary vs. quaternary stoichiometry
,”
Energies
13
,
3516
(
2020
).
14.
M. D.
Smith
,
B. A.
Connor
, and
H. I.
Karunadasa
, “
Tuning the luminescence of layered halide perovskites
,”
Chem. Rev.
119
,
3104
3139
(
2019
).
15.
B. A.
Connor
,
L.
Leppert
,
M. D.
Smith
,
J. B.
Neaton
, and
H. I.
Karunadasa
, “
Layered halide double perovskites: Dimensional reduction of Cs2AgBiBr6
,”
J. Am. Chem. Soc.
140
,
5235
5240
(
2018
).
16.
G.
Giorgi
,
K.
Yamashita
, and
M.
Palummo
, “
Nature of the electronic and optical excitations of ruddlesden–popper hybrid organic–inorganic perovskites: he role of the many-body interactions
,”
J. Phys. Chem. Lett.
9
,
5891
5896
(
2018
).
17.
Y.
Li
,
T.
Yang
,
Z.
Xu
,
X.
Liu
,
X.
Huang
,
S.
Han
,
Y.
Liu
,
M.
Li
,
J.
Luo
, and
Z.
Sun
, “
Dimensional reduction of Cs2AgBiBr6: A 2D hybrid double perovskite with strong polarization sensitivity
,”
Angew. Chem.
132
,
3457
3461
(
2020
).
18.
M. S.
Prete
,
O.
Pulci
, and
F.
Bechstedt
, “
Strong in- and out-of-plane excitons in two-dimensional InN nanosheets
,”
Phys. Rev. B
98
,
235431
(
2018
).
19.
M.
Brotons-Gisbert
,
R.
Proux
,
R.
Picard
,
D.
Andres-Penares
,
A.
Branny
,
A.
Molina-Sánchez
,
J. F.
Sánchez-Royo
, and
B. D.
Gerardot
, “
Out-of-plane orientation of luminescent excitons in two-dimensional indium selenide
,”
Nat. Commun.
10
,
3913
(
2019
).
20.
I.
Guilhon
,
M.
Marques
,
L. K.
Teles
,
M.
Palummo
,
O.
Pulci
,
S.
Botti
, and
F.
Bechstedt
, “
Out-of-plane excitons in two-dimensional crystals
,”
Phys. Rev. B
99
,
161201
(
2019
).
21.
Z.
Li
,
B.
Xu
,
D.
Liang
, and
A.
Pan
, “
Polarization-dependent optical properties and optoelectronic devices of 2D materials
,”
Research
2020
,
5464258
.
22.
A.
Fieramosca
,
L.
De Marco
,
M.
Passoni
,
L.
Polimeno
,
A.
Rizzo
,
B. L.
Rosa
,
G.
Cruciani
,
L.
Dominici
,
M.
De Giorgi
,
G.
Gigli
 et al, “
Tunable out-of-plane excitons in 2D single-crystal perovskites
,”
ACS Photonics
5
,
4179
4185
(
2018
).
23.
G.
Kresse
and
J.
Hafner
, “
Ab initio molecular dynamics for open-shell transition metals
,”
Phys. Rev. B
48
,
13115
13118
(
1993
).
24.
G.
Kresse
and
J.
Hafner
, “
Ab initio molecular-dynamics simulation of the liquid-metal–amorphous-semiconductor transition in germanium
,”
Phys. Rev. B
49
,
14251
14269
(
1994
).
25.
G.
Kresse
and
J.
Furthmüller
, “
Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set
,”
Comput. Mater. Sci.
6
,
15
50
(
1996
).
26.
G.
Kresse
and
J.
Furthmüller
, “
Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set
,”
Phys. Rev. B
54
,
11169
11186
(
1996
).
27.
P.
Giannozzi
,
S.
Baroni
,
N.
Bonini
,
M.
Calandra
,
R.
Car
,
C.
Cavazzoni
,
D.
Ceresoli
,
G. L.
Chiarotti
,
M.
Cococcioni
,
I.
Dabo
,
A.
Dal Corso
,
S.
de Gironcoli
,
S.
Fabris
,
G.
Fratesi
,
R.
Gebauer
,
U.
Gerstmann
,
C.
Gougoussis
,
A.
Kokalj
,
M.
Lazzeri
,
L.
Martin-Samos
,
N.
Marzari
,
F.
Mauri
,
R.
Mazzarello
,
S.
Paolini
,
A.
Pasquarello
,
L.
Paulatto
,
C.
Sbraccia
,
S.
Scandolo
,
G.
Sclauzero
,
A. P.
Seitsonen
,
A.
Smogunov
,
P.
Umari
, and
R. M.
Wentzcovitch
, “
QUANTUM ESPRESSO: A modular and open-source software project for quantum simulations of materials
,”
J. Phys.: Condens. Matter
21
,
395502
(
2009
).
28.
P.
Giannozzi
,
O.
Andreussi
,
T.
Brumme
,
O.
Bunau
,
M. B.
Nardelli
,
M.
Calandra
,
R.
Car
,
C.
Cavazzoni
,
D.
Ceresoli
,
M.
Cococcioni
,
N.
Colonna
,
I.
Carnimeo
,
A. D.
Corso
,
S.
de Gironcoli
,
P.
Delugas
,
R. A.
DiStasio
, Jr.
,
A.
Ferretti
,
A.
Floris
,
G.
Fratesi
,
G.
Fugallo
,
R.
Gebauer
,
U.
Gerstmann
,
F.
Giustino
,
T.
Gorni
,
J.
Jia
,
M.
Kawamura
,
H.-Y.
Ko
,
A.
Kokalj
,
E.
Küçükbenli
,
M.
Lazzeri
,
M.
Marsili
,
N.
Marzari
,
F.
Mauri
,
N. L.
Nguyen
,
H.-V.
Nguyen
,
A. O.
de-la Roza
,
L.
Paulatto
,
S.
Poncé
,
D.
Rocca
,
R.
Sabatini
,
B.
Santra
,
M.
Schlipf
,
A. P.
Seitsonen
,
A.
Smogunov
,
I.
Timrov
,
T.
Thonhauser
,
P.
Umari
,
N.
Vast
,
X.
Wu
, and
S.
Baroni
, “
Advanced capabilities for materials modelling with Quantum ESPRESSO
,”
J. Phys.: Condens. Matter
29
,
465901
(
2017
).
29.
A.
Marini
,
C.
Hogan
,
M.
Grüning
, and
D.
Varsano
, “
Yambo: An ab initio tool for excited state calculations
,”
Comput. Phys. Commun.
180
,
1392
1403
(
2009
).
30.
D.
Sangalli
,
A.
Ferretti
,
H.
Miranda
,
C.
Attaccalite
,
I.
Marri
,
E.
Cannuccia
,
P.
Melo
,
M.
Marsili
,
F.
Paleari
,
A.
Marrazzo
,
G.
Prandini
,
P.
Bonfà
,
M. O.
Atambo
,
F.
Affinito
,
M.
Palummo
,
A.
Molina-Sánchez
,
C.
Hogan
,
M.
Grüning
,
D.
Varsano
, and
A.
Marini
, “
Many-body perturbation theory calculations using the yambo code
,”
J. Phys.: Condens. Matter
31
,
325902
(
2019
).
31.
G.
Strinati
,
H. J.
Mattausch
, and
W.
Hanke
, “
Dynamical aspects of correlation corrections in a covalent crystal
,”
Phys. Rev. B
25
,
2867
2888
(
1982
).
32.
G.
Strinati
, “
Application of the Green's functions method to the study of the optical properties of semiconductors
,”
Riv. Nuovo Cimento
11
,
1
86
(
1988
).
33.
W.
Hanke
and
L. J.
Sham
, “
Dielectric response in the Wannier representation: Application to the optical spectrum of diamond
,”
Phys. Rev. Lett.
33
,
582
585
(
1974
).
34.
W.
Hanke
and
L. J.
Sham
, “
Many-particle effects in the optical spectrum of a semiconductor
,”
Phys. Rev. B
21
,
4656
4673
(
1980
).
35.
G.
Onida
,
L.
Reining
, and
A.
Rubio
, “
Electronic excitations: Density-functional versus many-body Green's-function approaches
,”
Rev. Mod. Phys.
74
,
601
(
2002
).
36.
M.
Marsili
,
A.
Molina-Sánchez
,
M.
Palummo
,
D.
Sangalli
, and
A.
Marini
, “
Spinorial formulation of the GW-BSE equations and spin properties of excitons in two-dimensional transition metal dichalcogenides
,”
Phys. Rev. B
103
,
155152
(
2021
).
37.
R.
Godby
and
R.
Needs
, “
Metal-insulator transition in Kohn–Sham theory and quasiparticle theory
,”
Phys. Rev. Lett.
62
,
1169
(
1989
).
38.
I. A.
Sarsari
,
C.
Pemmaraju
,
H.
Salamati
, and
S.
Sanvito
, “
Many-body quasiparticle spectrum of co-doped ZnO: A GW perspective
,”
Phys. Rev. B
87
,
245118
(
2013
).
39.
P.
Umari
,
E.
Mosconi
, and
F.
De Angelis
, “
Relativistic GW calculations on CH3NH3PbI3 and CH3NH3SnI3 perovskites for solar cell applications
,”
Sci. Rep.
4
,
4467
(
2015
).
40.
G.
Giorgi
,
M.
Van Schilfgaarde
,
A.
Korkin
, and
K.
Yamashita
, “
On the chemical origin of the gap bowing in (GaAs)1xGe2x alloys: A combined DFT–QSGW study
,”
Nanoscale Res. Lett.
5
,
469
477
(
2010
).
41.
M. R.
Filip
and
F.
Giustino
, “
GW quasiparticle band gap of the hybrid organic-inorganic perovskite CH3NH3PbI3: Effect of spin-orbit interaction, semicore electrons, and self-consistency
,”
Phys. Rev. B
90
,
245145
(
2014
).
42.
S.
Dancoff
, “
Non-adiabatic meson theory of nuclear forces
,”
Phys. Rev.
78
,
382
(
1950
).
43.
R.-I.
Biega
,
M. R.
Filip
,
L.
Leppert
, and
J. B.
Neaton
, “
Chemically localized resonant excitons in silver–pnictogen halide double perovskites
,”
J. Phys. Chem. Lett.
12
,
2057
2063
(
2021
).
44.
M.
Palummo
and
G.
Giorgi
, private communications (
2020
).

Supplementary Material

You do not currently have access to this content.