Cryogenic operation of complementary metal oxide semiconductor (CMOS) silicon transistors is crucial for quantum information science, but it brings deviations from standard transistor operation. Here, we report on sharp current jumps and stable hysteretic loops in the drain current as a function of gate voltage VG for both n- and p-type commercial-foundry 180-nm-process CMOS transistors when operated at voltages exceeding 1.3 V at cryogenic temperatures. The physical mechanism responsible for the device bistability is impact ionization charging of the transistor body, which leads to effective back-gating of the inversion channel. This mechanism is verified by independent measurements of the body potential. The hysteretic loops, which have a >107 ratio of high to low drain current states at the same VG, can be used for a compact capacitorless single-transistor memory at cryogenic temperatures with long retention times.

1.
B.
Patra
,
R. M.
Incandela
,
J. P. G.
van Dijk
 et al., “
Cryo-CMOS circuits and systems for quantum computing applications
,”
IEEE J. Solid-State Circ.uit
53
,
309
(
2018
).
2.
S. J.
Pauka
,
K.
Das
,
R.
Kalra
,
A.
Moini
,
Y.
Yang
,
M.
Trainer
,
A.
Bousquet
,
C.
Cantaloube
,
N.
Dick
,
G. C.
Gardner
,
M. J.
Manfra
, and
D. J.
Reilly
, “
A cryogenic CMOS chip for generating control signals for multiple qubits
,”
Nat. Electron.
4
,
64
(
2021
).
3.
A.
Beckers
,
F.
Jazaeri
, and
C.
Enz
, “
Characterization and modeling of 28-nm bulk CMOS technology down to 4.2 K
,”
J. Electron Dev. Soc.
6
,
1007
1018
(
2018
).
4.
R. M.
Incandela
,
L.
Song
,
H.
Homulle
,
E.
Charbon
,
A.
Vladimirescu
, and
F.
Sebastiano
, “
Characterization and compact modeling of nanometer CMOS transistors at deep-cryogenic temperatures
,”
J. Electron Dev. Soc.
6
,
996
1006
(
2018
).
5.
J.
Ning
,
M.
Schormans
, and
A.
Demosthenous
, “
Towards an improved model for 65-nm CMOS at cryogenic temperatures
,” in
Proceedings of the 2020 IEEE International Symposium Circuit Systems (ISCAS)
(2020).
6.
A.
Beckers
,
F.
Jazaeri
, and
C.
Enz
, “
Theoretical limit of low temperature subthreshold swing in field-effect transistors
,”
IEEE Electron Dev. Lett.
41
,
276
(
2020
).
7.
F.
Balestra
and
G.
Ghibaudo
, “
Physics and performance of nanoscale semiconductor devices at cryogenic temperatures
,”
Semicond. Sci. Technol.
32
,
023002
(
2017
).
8.
W.
Chakraborty
,
K.
Ni
,
S.
Dutta
,
B.
Grisafe
,
J.
Smith
, and
S.
Datta
, “
Cryogenic response of HKMG MOSFETs for quantum computing systems
,” in
2019 Device Research Conference (DRC)
(IEEE,
2019
), pp.
115
116
.
9.
L.
Deferm
,
E.
Simoen
, and
C.
Claeys
, “
The importance of the internal bulk-source potential on the low temperature kink in NMOST's
,”
IEEE Trans. Electron. Devices
38
,
1459
(
1991
).
10.
F.
Balestra
,
L.
Audaire
, and
C.
Lucas
, “
Influence of substrate freeze-out on the characteristics of MOS transistors at very low temperatures
,”
Solid State Electron.
30
,
321
(
1987
).
11.
Device and Circuit Cryogenic Operation for Low Temperature Electronics
, edited by
F.
Balestra
and
G.
Ghibaudo
(
Springer
,
New York
,
2001
).
12.
A.
Akturk
,
M.
Peckerar
,
M.
Dornajafi
,
N.
Goldsman
,
K.
Eng
,
T.
Gurrieri
, and
M. S.
Carroll
, “
Impact ionization and freeze-out model for simulation of low gate bias kink effect in SOI-MOSFETs operating at liquid He temperature
,” in
2009 Interntional Conference on Simulation of Semiconductor Processes and Devices (SISPAD)
(
2009
).
13.
Y.
Taur
and
T.
Ning
,
Fundamentals of Modern VLSI Devices
, 2nd ed. (
Cambridge University Press
,
New York
,
2013
).
14.
T.
Ouisse
,
G.
Ghibaudo
,
J.
Brini
,
S.
Cristoloveanu
, and
G.
Borel
, “
Investigation of floating body effects in silicon-on-insulator metal-oxide-semiconductor field-effect transistors
,”
J. Appl. Phys.
70
,
3912
(
1991
).
15.
S.
Okhonin
,
M.
Nagoga
,
J. M.
Sallese
, and
P.
Fazan
, “
A SOI capacitor-less 1T-DRAM concept
,” in
2001 IEEE International on SOI Conference
(IEEE,
2001
), pp.
153
154
.
16.
C.
Hu
,
T.-J.
King
, and
C.
Hu
, “
A capacitor-less 1T-DRAM cell
,”
IEEE Electron Device Lett.
23
,
345
347
(
2002
).
17.
An up-to-date overview of SOI-based floating-body mechanisms and memories is available in
S.
Cristoloveanu
,
Fully Depleted Silicon-on-Insulator: Nanodevices, Mechanisms, and Characterization
(
Elsevier
,
Cambridge, MA
,
2021
).
You do not currently have access to this content.