We propose a theoretical model for describing the operation of a field-effect transistor (FET) with a MoS2 monolayer channel, which allows us to obtain an analytical approximation of the potential in the channel, that depends on the drain and gate voltages. On this basis, we make estimates for the minimum channel lengths due to the fundamental restriction of quantum tunneling through the barrier. It is shown that the relatively large effective electron mass in the MoS2 monolayer allows us to predict the creation of devices with channels of a significantly shorter (2.5–3 nm) length than in traditional silicon MOSFETs. The ultra-short channel and high enough mobility on the hafnium oxide substrate, of the order of that of silicon, make the transistor promising for the ultra-fast electronics, and, in particular, potentially suitable for 5G devices.

1.
K. S.
Novoselov
,
A. K.
Geim
,
S. V.
Morozov
,
D.
Jiang
,
Y.
Zhang
,
S. V.
Dubonos
,
I. V.
Grigorieva
, and
A. A.
Firsov
, “
Electric field effect in atomically thin carbon films
,”
Science
306
,
666
(
2004
).
2.
Y. O.
Kruglyak
and
M. V.
Strikha
, “
Generalised Landauer-Dutt-Lundstrom model in application to transport phenomena in graphene
,”
Ukr. J. Phys. Rev.
10
,
3
32
(
2015
) (in Ukrainian).
3.
X.
Li
,
X.
Wang
,
L.
Zhang
,
S.
Lee
, and
H.
Dai
, “
Chemically derived, ultrasmooth graphene nanoribbon semiconductors
,”
Science
319
,
1229
(
2008
).
4.
L.
Jiao
,
L.
Zhang
,
X.
Wang
,
G.
Diankov
, and
H.
Dai
, “
Narrow graphene nanoribbons from carbon nanotubes
,”
Nature
458
,
877
(
2009
).
5.
F. A.
Rasmussen
and
K. S.
Thygesen
, “
Computational 2D materials database: electronic structure of transition-metal dichalcogenides and oxides
,”
J. Phys. Chem. C
119
,
13169
(
2015
).
6.
B.
Radisavljevic
,
A.
Radenovic
,
J.
Brivio
,
V.
Giacometti
, and
A.
Kis
, “
Single-layer MoS2 transistors
,”
Nat. Nanotechnol.
6
,
147
(
2011
).
7.
A.
Nourbakhsh
,
A.
Zubair
,
R. N.
Sajjad
,
A.
Tavakkoli K. G
,
W.
Chen
,
S.
Fang
,
Xi
Ling
,
J.
Kong
,
M. S.
Dresselhaus
,
E.
Kaxiras
,
K. K.
Berggren
,
D.
Antoniadis
, and
T.
Palacios
, “
MoS2 field-effect transistor with sub-10 nm channel length
,”
Nano Lett.
16
(
12
),
7798
(
2016
).
8.
Y.
Chen
,
X.
Wang
,
P.
Wang
,
H.
Huang
,
G.
Wu
,
B.
Tian
,
Z.
Hong
,
Y.
Wang
,
S.
Sun
,
H.
Shen
,
J.
Wang
,
W.
Hu
,
J.
Sun
,
X.
Meng
, and
J.
Chu
, “
Optoelectronic properties of few-layer MoS2 FET gated by ferroelectric relaxor polymer
,”
ACS Appl. Mater. Interfaces
8
,
32083
(
2016
).
9.
Pin-Chun
Shen
,
C.
Lin
,
H.
Wang
,
K.
Hoo Teo
, and
J.
Kong
, “
Ferroelectric memory field-effect transistors using CVD monolayer MoS2 as resistive switching channel
,”
Appl. Phys. Lett.
116
,
033501
(
2020
).
10.
W.
Cao
,
W.
Liu
,
J.
Kang
, and
K.
Banerjee
, “
An ultra-short channel monolayer MoS2 FET defined by the curvature of a thin nanowire
,”
IEEE Electron Device Lett.
37
,
1497
(
2016
).
11.
L.
Xie
,
M.
Liao
,
S.
Wang
,
H.
Yu
,
L.
Du
,
J.
Tang
,
J.
Zhao
 et al, “
Graphene‐contacted ultrashort channel monolayer MoS2 transistors
,”
Adv. Mater.
29
,
1702522
(
2017
).
12.
Y. O.
Kruglyak
and
M. V.
Strіkha
, “
Physics of nanotransistors: MOSFET theory in traditional approach, zero level virtual source model, and depletion approximation
,”
Sens. Electron. Microsyst. Technol.
16
,
7
40
(
2019
) (in Ukrainian).
13.
Y. O.
Kruglyak
and
M. V.
Strіkha
, “
Physics of nanotransistors: Unification of transmission model with virtual source model—MVS-transmission model
,”
Sens. Electron. Microsyst. Technol.
17
,
4
22
(
2020
) (in Ukrainian).
14.
M. V.
Strikha
,
A. I.
Kurchak
, and
A. N.
Morozovska
, “
Fundamental constraints for the length of the MOSFET conduction channel based on the realistic form of the potential barrier
,” arXiv:2012.11203(
2020
).
15.
M.
Lundstrom
,
Fundamentals of Nanotransistors
(
World Scientific
,
Singapore
,
2018
); www.nanohub.org/courses/NT.
16.
K. K. H.
Smithe
,
C. D.
English
,
S. V.
Suryavanshi
, and
E.
Pop
, “
High-field transport and velocity saturation in synthetic monolayer MoS2
,”
Nano Lett.
18
,
4516
4522
(
2018
).
17.
H.
Falco
,
T.
Olsen
, and
K. S.
Thygesen
, “
How dielectric screening in two-dimensional crystals affects the convergence of excited-state calculations: Monolayer MoS2
,”
Phys. Rev. B
88
,
245309
(
2013
).
18.
Y. O.
Kruglyak
and
M. V.
Strіkha
, “
Physics of nanotransistors: Devices, metrics and operation
,”
Sens. Electron. Microsyst. Technol.
15
,
18
40
(
2018
) (in Ukrainian).
19.
H.
Wakabayashi
,
S.
Yamagami
,
N.
Ikezawa
,
A.
Ogura
,
M.
Narihiro
,
K.-I.
Arai
,
Y.
Ochiai
,
K.
Takeuchi
,
T.
Yamamoto
, and
T.
Mogami
, “
Sub-10-nm planar-bulk-CMOS devices using lateral junction control
,” in
IEEE International Electron Devices Meeting 2003
(
IEEE
,
2003
), pp.
20.7.1
20.7.3
.
20.
R.
Landauer
,
IBM J. Res. Dev.
5
,
183
191
(
1961
).
21.
J.
Furlan
,
Ž.
Gorup
,
A.
Levstek
, and
S.
Amon
, “
Thermally assisted tunneling and the Poole–Frenkel effect in homogenous a-Si
,”
J. Appl. Phys.
94
,
7604
(
2003
).
22.
A. D.
Franklin
,
M.
Luisier
,
S.-J.
Han
,
G.
Tulevski
,
C. M.
Breslin
,
L.
Gignac
,
M. S.
Lundstrom
, and
W.
Haensch
,
Nano Lett.
12
,
758
762
(
2012
).

Supplementary Material

You do not currently have access to this content.