Halide perovskite materials have attracted great interest for applications in low-cost, solution-processed solar cells and other optoelectronics applications. The role of moisture in perovskite device degradation and crystal formation processes remains poorly understood. Here, we use a data-driven approach to discover the influence of trace amounts of water on perovskite crystal formation by analyzing a comprehensive dataset of 8470 inverse-temperature crystallization lead iodide perovskite synthesis reactions, performed over 20 months using a robotic system. We identified discrepancies between the empirical crystal formation rates in batches of experiments conducted under different ambient relative humidity conditions for each organoammonium cation. We prioritized these using a statistical model and then used the robotic system to conduct 1296 controlled interventional experiments, in which small amounts of water were deliberately introduced to the reactions. The addition of trace amounts of water promotes crystal formation for 4-methoxyphenylammonium lead iodide and iso-propylammonium lead iodide and inhibits crystal formation for dimethylammonium lead iodide and acetamidinium lead iodide. We also performed thin-film syntheses of these four materials and determined the grain size distributions using scanning electron microscopy. The addition of water results in smaller grain sizes for dimethylammonium and larger grain sizes for iso-propylammonium, consistent with earlier or delayed nucleation, respectively. The agreement between the inverse temperature crystallization and thin film results indicates that this is a feature of the organoammonium-water interaction that persists despite differences in the synthesis method.

1.
T.
Zuo
,
X.
He
,
P.
Hu
, and
H.
Jiang
,
ChemNanoMat
5
,
278
(
2019
).
2.
L. N.
Quan
,
B. P.
Rand
,
R. H.
Friend
,
S. G.
Mhaisalkar
,
T.-W.
Lee
, and
E. H.
Sargent
,
Chem. Rev.
119
,
7444
(
2019
).
3.
A. K.
Jena
,
A.
Kulkarni
, and
T.
Miyasaka
,
Chem. Rev.
119
,
3036
(
2019
).
4.
B.
Saparov
and
D. B.
Mitzi
,
Chem. Rev.
116
,
4558
(
2016
).
5.
M. F.
Mohamad Noh
,
N. A.
Arzaee
,
I. N.
Nawas Mumthas
,
N. A.
Mohamed
,
S. N. F.
Mohd Nasir
,
J.
Safaei
,
A. R. B. M.
Yusoff
,
M. K.
Nazeeruddin
, and
M. A.
Mat Teridi
,
J. Mater. Chem. A
8
,
10481
(
2020
).
6.
L.
Contreras-Bernal
,
A.
Riquelme
,
J. J.
Gallardo
,
J.
Navas
,
J.
Idígoras
, and
J. A.
Anta
,
ACS Sustainable Chem. Eng.
8
,
7132
(
2020
).
7.
J.
Huang
,
S.
Tan
,
P. D.
Lund
, and
H.
Zhou
,
Energy Environ. Sci.
10
,
2284
(
2017
).
8.
C.
Aranda
,
A.
Guerrero
, and
J.
Bisquert
,
ChemPhysChem
20
,
2587
(
2019
).
9.
U.-G.
Jong
,
C.-J.
Yu
,
G.-C.
Ri
,
A. P.
McMahon
,
N. M.
Harrison
,
P. R. F.
Barnes
, and
A.
Walsh
,
J. Mater. Chem. A
6
,
1067
(
2018
).
10.
G.
Mannino
,
I.
Deretzis
,
E.
Smecca
,
F.
Giannazzo
,
S.
Valastro
,
G.
Fisicaro
,
A.
La Magna
,
D.
Ceratti
, and
A.
Alberti
,
J. Phys. Chem. C
125
,
4938
(
2021
).
11.
G. E.
Eperon
,
S. N.
Habisreutinger
,
T.
Leijtens
,
B. J.
Bruijnaers
,
J. J.
van Franeker
,
D. W.
deQuilettes
,
S.
Pathak
,
R. J.
Sutton
,
G.
Grancini
,
D. S.
Ginger
,
R. A. J.
Janssen
,
A.
Petrozza
, and
H. J.
Snaith
,
ACS Nano
9
,
9380
(
2015
).
12.
H.
Gao
,
C.
Bao
,
F.
Li
,
T.
Yu
,
J.
Yang
,
W.
Zhu
,
X.
Zhou
,
G.
Fu
, and
Z.
Zou
,
ACS Appl. Mater. Interfaces
7
,
9110
(
2015
).
13.
J.
Hidalgo
,
C. A. R.
Perini
,
A.-F.
Castro-Mendez
,
D.
Jones
,
H.
Köbler
,
B.
Lai
,
R.
Li
,
S.
Sun
,
A.
Abate
, and
J.-P.
Correa-Baena
,
ACS Energy Lett.
5
,
3526
(
2020
).
14.
H.
Tsai
,
W.
Nie
,
J.-C.
Blancon
,
C. C.
Stoumpos
,
R.
Asadpour
,
B.
Harutyunyan
,
A. J.
Neukirch
,
R.
Verduzco
,
J. J.
Crochet
,
S.
Tretiak
,
L.
Pedesseau
,
J.
Even
,
M. A.
Alam
,
G.
Gupta
,
J.
Lou
,
P. M.
Ajayan
,
M. J.
Bedzyk
,
M. G.
Kanatzidis
, and
A. D.
Mohite
,
Nature
536
,
312
(
2016
).
15.
I. C.
Smith
,
E. T.
Hoke
,
D.
Solis-Ibarra
,
M. D.
McGehee
, and
H. I.
Karunadasa
,
Angew. Chem. Int. Ed.
53
,
11232
(
2014
).
16.
Y.
Dang
,
D.
Ju
,
L.
Wang
, and
X.
Tao
,
CrystEngComm
18
,
4476
(
2016
).
17.
B.
Murali
,
H. K.
Kolli
,
J.
Yin
,
R.
Ketavath
,
O. M.
Bakr
, and
O. F.
Mohammed
,
ACS Mater. Lett.
2
,
184
(
2020
).
18.
S.
Arya
,
P.
Mahajan
,
R.
Gupta
,
R.
Srivastava
,
N.
kumar Tailor
,
S.
Satapathi
,
R. R.
Sumathi
,
R.
Datt
, and
V.
Gupta
,
Prog. Solid State Chem.
60
,
100286
(
2020
).
19.
M. I.
Saidaminov
,
A. L.
Abdelhady
,
B.
Murali
,
E.
Alarousu
,
V. M.
Burlakov
,
W.
Peng
,
I.
Dursun
,
L.
Wang
,
Y.
He
,
G.
Maculan
,
A.
Goriely
,
T.
Wu
,
O. F.
Mohammed
, and
O. M.
Bakr
,
Nat. Commun.
6
,
7586
(
2015
).
20.
J. M.
Kadro
,
K.
Nonomura
,
D.
Gachet
,
M.
Grätzel
, and
A.
Hagfeldt
,
Sci. Rep.
5
,
11654
(
2015
).
21.
P. K.
Nayak
,
D. T.
Moore
,
B.
Wenger
,
S.
Nayak
,
A. A.
Haghighirad
,
A.
Fineberg
,
N. K.
Noel
,
O. G.
Reid
,
G.
Rumbles
,
P.
Kukura
,
K. A.
Vincent
, and
H. J.
Snaith
,
Nat. Commun.
7
,
13303
(
2016
).
22.
Z.
Li
,
M. A.
Najeeb
,
L.
Alves
,
A. Z.
Sherman
,
V.
Shekar
,
P.
Cruz Parrilla
,
I. M.
Pendleton
,
W.
Wang
,
P. W.
Nega
,
M.
Zeller
,
J.
Schrier
,
A. J.
Norquist
, and
E. M.
Chan
,
Chem. Mater.
32
,
5650
(
2020
).
24.
I. M.
Pendleton
,
G.
Cattabriga
,
Z.
Li
,
M. A.
Najeeb
,
S. A.
Friedler
,
A. J.
Norquist
,
E. M.
Chan
, and
J.
Schrier
,
MRS Commun.
9
,
846
(
2019
).
25.
J.-H.
Im
,
J.
Chung
,
S.-J.
Kim
, and
N.-G.
Park
,
Nanoscale Res. Lett.
7
,
353
(
2012
).
26.
P.
Raccuglia
,
K. C.
Elbert
,
P. D. F.
Adler
,
C.
Falk
,
M. B.
Wenny
,
A.
Mollo
,
M.
Zeller
,
S. A.
Friedler
,
J.
Schrier
, and
A. J.
Norquist
,
Nature
533
,
73
(
2016
).
27.
X.
Jia
,
A.
Lynch
,
Y.
Huang
,
M.
Danielson
,
I.
Lang'at
,
A.
Milder
,
A. E.
Ruby
,
H.
Wang
,
S. A.
Friedler
,
A. J.
Norquist
, and
J.
Schrier
,
Nature
573
,
251
(
2019
).
28.
29.
See https://in.omega.com/pptst/HH310_311.html for technical specifications of the temperature and humidity probe (accessed 21 July
2021
).
30.
Y.
Tang
,
Z.
Li
,
M. A. N.
Nellikkal
,
H.
Eramian
,
E. M.
Chan
,
A. J.
Norquist
,
D. F.
Hsu
, and
J.
Schrier
,
J. Chem. Inf. Model.
61
,
1593
(
2021
).
31.
32.
M. W.
Fagerland
,
S.
Lydersen
, and
P.
Laake
,
BMC Med. Res. Methodol
13
,
91
(
2013
).
33.
S.
Suissa
and
J. J.
Shuster
,
Biometrics
47
,
361
(
1991
).
34.
S.
Sun
,
N. T. P.
Hartono
,
Z. D.
Ren
,
F.
Oviedo
,
A. M.
Buscemi
,
M.
Layurova
,
D. X.
Chen
,
T.
Ogunfunmi
,
J.
Thapa
,
S.
Ramasamy
,
C.
Settens
,
B. L.
DeCost
,
A. G.
Kusne
,
Z.
Liu
,
S. I. P.
Tian
,
I. M.
Peters
,
J.-P.
Correa-Baena
, and
T.
Buonassisi
,
Joule
3
,
1437
(
2019
).
35.
U. H.
Hamdeh
,
B. J.
Ryan
,
R. D.
Nelson
,
M.
Zembrzuski
,
J.
Slobidsky
,
K. J.
Prince
,
I.
Cleveland
,
A.
Vela-Ramirez
,
A. C.
Hillier
, and
M. G.
Panthani
,
J. Phys. Chem. Lett.
10
,
3134
(
2019
).
36.
S. S.
Shin
,
J. P.
Correa Baena
,
R. C.
Kurchin
,
A.
Polizzotti
,
J. J.
Yoo
,
S.
Wieghold
,
M. G.
Bawendi
, and
T.
Buonassisi
,
Chem. Mater.
30
,
336
(
2018
).
37.
Electronic Supporting Information
for: “Using automated serendipity to discover how trace water promotes and inhibits lead halide perovskite crystal formation,” figshare.

Supplementary Material

You do not currently have access to this content.