Cryogenic computing requires an energy-efficient optical data link from 4 K to the end-user at room temperature. Laser spectra and light–current–voltage family curves over a wide temperature range from 2.6 to 295 K are reported on oxide-vertical cavity surface emitting lasers coupled with OM4 fiber. Non-linear shifting of the lasing wavelength vs junction temperatures is measured with the wavelength shifting coefficients <0.005 nm/K at 2.6 K. 12.5 Gb/s non-return-to-zero error-free data transmission at 2.6 K to the error detector at 295 K is demonstrated as a viable solution for cryo-computing.

1.
D. S.
Holmes
,
A. L.
Ripple
, and
M. A.
Manheimer
, “
Energy-efficient superconducting computing—Power budgets and requirements
,”
IEEE Trans. Appl. Supercond.
23
,
1701610
(
2013
).
2.
D. L.
Huffaker
,
D. G.
Deppe
, and
K.
Kuma
, “
Native-oxide defined ring contacts for low threshold vertical-cavity lasers
,”
Appl. Phys. Lett.
65
(
1
),
97
99
(
1994
).
3.
M.
Feng
,
C.
Wu
, and
N.
Holonyak
, Jr.
, “
Oxide-confined VCSELs for high-speed optical interconnects
,”
IEEE J. Quantum Electron.
56
(
2
),
2400115
(
2018
).
4.
D.
Deppe
,
A.
Srinivasa
,
C.
Kuznia
,
J.
Ahadian
,
M.
Feng
,
W.
Fu
,
H. L.
Wang
, and
H.
Wu
, “
Cryogenic VCSEL-link for low bit energy
,” in GOMACTech-2020 (
2020
).
5.
M.
Bayat
and
D. G.
Deppe
, “
Laser characteristics for VCSELs for 77 K and 4 K optical data application
,”
IEEE J. Quantum Electron.
56
(
3
),
2400206
(
2020
).
6.
W.
Fu
,
H.
Wang
,
H.
Wu
,
A.
Srinivasa
,
S.
Srinivasa
,
M.
Feng
, and
D.
Deppe
, “
Cryogenic 50 GHz VCSEL for sub-100 fJ/bit optical link
,” in IEEE Photonics Conference (IPC), Vancouver, BC, Canada (
2020
).
7.
O. A.
Mukhanov
,
S. V.
Rylov
,
D. V.
Gaidarenko
,
N. B.
Dubash
, and
V. V.
Borzenets
, “
Josephson output interfaces for RSPQ circuits
,”
IEEE Trans. Appl. Supercond.
7
(
2
),
2826
(
1997
).
8.
W.
Fu
,
H.
Wu
,
D.
Wu
,
M.
Feng
, and
D.
Deppe
, “
Cryogenic oxide-VCSELs with bandwidth over 50 GHz at 82 K for next-gen high-speed computing
,” in
Optical Fiber Communications Conference (OFC)
2021, June 6–10 (
2021
).
9.
B.
Lu
,
Y. C.
Lu
,
J.
Cheng
,
R. P.
Schneider
,
J. C.
Zolper
, and
G.
Goncher
, “
Gigabit-per-second cryogenic optical link using optimized low-temperature AlGaAs–GaAs vertical-cavity surface-emitting lasers
,”
IEEE J. Quantum Electron.
32
,
1347
1358
(
1996
).
10.
D. K.
Serkland
,
K. M.
Geib
,
G. M.
Peake
,
G. A.
Keeler
, and
A. Y.
Hsu
, “
850-nm VCSELs optimized for cryogenic data transmission
,”
Proc. SPIE
8276
,
82760S
(
2012
).
11.
C. Y.
Wang
,
M.
Liu
,
M.
Feng
, and
N.
Holonyak
, “
Temperature-dependent analysis of 50 Gb/s oxide-confined VCSELs
,” in
Optical Fiber Communications Conference (OFC), Los Angeles, CA
(
OSA
,
2017
), pp.
1
3
.
12.
T. Y.
Huang
,
J.
Qiu
,
C.-H.
Wu
,
H.-T.
Cheng
,
M.
Feng
, and
H.-C.
Kuo
, “
A NRZ-OK modulated 850-nm VCSEL with 54 Gb/s error-free data transmission
,” in
2019 Conference on Lasers and Electro-Optics Europe and European Quantum Electronics Conference (CLEO/Europe-EQEC 2019)
(
IEEE
,
2019
).
13.
S. I.
Novikova
,
Sov. Phys. Solid State
3
,
129
(
1961
).
14.
E. P.
Haglund
,
P.
Westbergh
,
J. S.
Gustavsson
, and
A.
Larsson
, “
Impact of damping on high-speed large signal VCSEL dynamics
,”
J. Lightwave Technol.
33
(
4
),
795
801
(
2015
).
15.
C. Y.
Wang
,
M.
Liu
,
M.
Feng
, and
N.
Holonyak
, Jr.
, “
Microwave extraction method of radiative recombination and photon lifetimes up to 85 °C on 50 Gb/s oxide-vertical cavity surface emitting laser
,”
J. Appl. Phys.
120
(
22
),
223103
(
2016
).
You do not currently have access to this content.