Cryogenic computing requires an energy-efficient optical data link from 4 K to the end-user at room temperature. Laser spectra and light–current–voltage family curves over a wide temperature range from 2.6 to 295 K are reported on oxide-vertical cavity surface emitting lasers coupled with OM4 fiber. Non-linear shifting of the lasing wavelength vs junction temperatures is measured with the wavelength shifting coefficients <0.005 nm/K at 2.6 K. 12.5 Gb/s non-return-to-zero error-free data transmission at 2.6 K to the error detector at 295 K is demonstrated as a viable solution for cryo-computing.
References
1.
D. S.
Holmes
, A. L.
Ripple
, and M. A.
Manheimer
, “Energy-efficient superconducting computing—Power budgets and requirements
,” IEEE Trans. Appl. Supercond.
23
, 1701610
(2013
).2.
D. L.
Huffaker
, D. G.
Deppe
, and K.
Kuma
, “Native-oxide defined ring contacts for low threshold vertical-cavity lasers
,” Appl. Phys. Lett.
65
(1
), 97
–99
(1994
).3.
M.
Feng
, C.
Wu
, and N.
Holonyak
, Jr., “Oxide-confined VCSELs for high-speed optical interconnects
,” IEEE J. Quantum Electron.
56
(2
), 2400115
(2018
).4.
D.
Deppe
, A.
Srinivasa
, C.
Kuznia
, J.
Ahadian
, M.
Feng
, W.
Fu
, H. L.
Wang
, and H.
Wu
, “Cryogenic VCSEL-link for low bit energy
,” in GOMACTech-2020 (2020
).5.
M.
Bayat
and D. G.
Deppe
, “Laser characteristics for VCSELs for 77 K and 4 K optical data application
,” IEEE J. Quantum Electron.
56
(3
), 2400206
(2020
).6.
W.
Fu
, H.
Wang
, H.
Wu
, A.
Srinivasa
, S.
Srinivasa
, M.
Feng
, and D.
Deppe
, “Cryogenic 50 GHz VCSEL for sub-100 fJ/bit optical link
,” in IEEE Photonics Conference (IPC), Vancouver, BC, Canada (2020
).7.
O. A.
Mukhanov
, S. V.
Rylov
, D. V.
Gaidarenko
, N. B.
Dubash
, and V. V.
Borzenets
, “Josephson output interfaces for RSPQ circuits
,” IEEE Trans. Appl. Supercond.
7
(2
), 2826
(1997
).8.
W.
Fu
, H.
Wu
, D.
Wu
, M.
Feng
, and D.
Deppe
, “Cryogenic oxide-VCSELs with bandwidth over 50 GHz at 82 K for next-gen high-speed computing
,” in Optical Fiber Communications Conference (OFC)
2021, June 6–10 (2021
).9.
B.
Lu
, Y. C.
Lu
, J.
Cheng
, R. P.
Schneider
, J. C.
Zolper
, and G.
Goncher
, “Gigabit-per-second cryogenic optical link using optimized low-temperature AlGaAs–GaAs vertical-cavity surface-emitting lasers
,” IEEE J. Quantum Electron.
32
, 1347
–1358
(1996
).10.
D. K.
Serkland
, K. M.
Geib
, G. M.
Peake
, G. A.
Keeler
, and A. Y.
Hsu
, “850-nm VCSELs optimized for cryogenic data transmission
,” Proc. SPIE
8276
, 82760S
(2012
).11.
C. Y.
Wang
, M.
Liu
, M.
Feng
, and N.
Holonyak
, “Temperature-dependent analysis of 50 Gb/s oxide-confined VCSELs
,” in Optical Fiber Communications Conference (OFC), Los Angeles, CA
(OSA
, 2017
), pp. 1
–3
.12.
T. Y.
Huang
, J.
Qiu
, C.-H.
Wu
, H.-T.
Cheng
, M.
Feng
, and H.-C.
Kuo
, “A NRZ-OK modulated 850-nm VCSEL with 54 Gb/s error-free data transmission
,” in 2019 Conference on Lasers and Electro-Optics Europe and European Quantum Electronics Conference (CLEO/Europe-EQEC 2019)
(IEEE
, 2019
).13.
14.
E. P.
Haglund
, P.
Westbergh
, J. S.
Gustavsson
, and A.
Larsson
, “Impact of damping on high-speed large signal VCSEL dynamics
,” J. Lightwave Technol.
33
(4
), 795
–801
(2015
).15.
C. Y.
Wang
, M.
Liu
, M.
Feng
, and N.
Holonyak
, Jr., “Microwave extraction method of radiative recombination and photon lifetimes up to 85 °C on 50 Gb/s oxide-vertical cavity surface emitting laser
,” J. Appl. Phys.
120
(22
), 223103
(2016
).© 2021 Author(s). Published under an exclusive license by AIP Publishing.
2021
Author(s)
You do not currently have access to this content.