Phosphor thermometry has been successfully applied within several challenging environments. Typically, the thermographic phosphors are excited by an ultraviolet light source, and the temperature-dependent spectral or temporal response is measured. However, this is challenging or impossible in optically thick environments. In addition, emission from other sources (e.g., a flame) may interfere with the optical phosphor emission. A temperature dependent x-ray excitation/emission could alleviate these issues as x-rays could penetrate obscurants with no interference from flame luminosity. In addition, x-ray emission could allow for thermometry within solids while simultaneously x-ray imaging the structural evolution. In this study, select thermographic phosphors were excited via x-ray radiation, and their x-ray emission characteristics were measured at various temperatures. Several of the phosphors showed varying levels of temperature dependence with the strongest sensitivity occurring for YAG:Dy and ZnGa2O4:Mn. This approach opens a path for less intrusive temperature measurements, particularly in optically opaque multiphase and solid phase combustion environments.

1.
A. D.
Casey
,
Z. A.
Roberts
,
A.
Satija
,
R. P.
Lucht
,
T. R.
Meyer
, and
S. F.
Son
, “
Dynamic imaging of the temperature field within an energetic composite using phosphor thermography
,”
Appl. Opt.
58
,
4320
4325
(
2019
).
2.
J.
Brübach
,
C.
Pflitsch
,
A.
Dreizler
, and
B.
Atakan
, “
On surface temperature measurements with thermographic phosphors: A review
,”
Prog. Energy Combust. Sci
39
,
37
60
(
2013
).
3.
M.
Aldén
,
A.
Omrane
,
M.
Richter
, and
G.
Särner
, “
Thermographic phosphors for thermometry: A survey of combustion applications
,”
Prog. Energy Combust. Sci.
37
,
422
461
(
2011
).
4.
G.
Särner
,
M.
Richter
, and
M.
Aldén
, “
Investigations of blue emitting phosphors for thermometry
,”
Meas. Sci. Technol.
19
,
125304
(
2008
).
5.
A. H.
Khalid
and
K.
Kontis
, “
Thermographic phosphors for high temperature measurements: Principles, current state of the art and recent applications
,”
Sensors
8
,
5673
5744
(
2008
).
6.
A.
Omrane
,
F.
Ossler
, and
M.
Aldén
, “
Two-dimensional surface temperature measurements of burning materials
,”
Proc. Combust. Inst.
29
,
2653
2659
(
2002
).
7.
A. H.
Khalid
and
K.
Kontis
, “
2D surface thermal imaging using rise-time analysis from laser-induced luminescence phosphor thermometry
,”
Meas. Sci. Technol.
20
,
025305
(
2009
).
8.
T.
Cai
,
Y.
Park
,
S.
Mohammadshahi
, and
K. C.
Kim
, “
Rise time-based phosphor thermometry using Mg4FGeO6:Mn4
,”
Meas. Sci. Technol.
32
,
015201
(
2021
).
9.
S. W.
Allison
,
D. L.
Beshears
,
M. R.
Cates
,
M.
Paranthaman
, and
G. T.
Gilles
, “
LED-induced fluorescence diagnostics for turbine and combustion engine thermometry
,”
Opt. Diagnostics Fluids, Solids, Combust.
4448
,
28
35
(
2001
).
10.
L. P.
Goss
,
A. A.
Smith
, and
M. E.
Post
, “
Surface thermometry by laser‐induced fluorescence
,”
Rev. Sci. Instrum.
60
,
3702
3706
(
1989
).
11.
A. L.
Heyes
,
S.
Seefeldt
, and
J. P.
Feist
, “
Two-colour phosphor thermometry for surface temperature measurement
,”
Opt. Laser Technol.
38
,
257
265
(
2006
).
12.
T.
Husberg
,
S.
Gjirja
,
I.
Denbratt
,
A.
Omrane
,
M.
Aldén
, and
J.
Engström
, “
Piston temperature measurement by use of thermographic phosphors and thermocouples in a heavy-duty diesel engine run under partly premixed conditions
,” in SAE Technical Paper (
2005
).
13.
J. T.
Kashdan
,
B.
Thirouard
,
S.
Sae
,
I.
Journal
,
J. T.
Kashdan
, and
B.
Thirouard
, “
A comparison of combustion and emissions behaviour in optical and metal single-cylinder diesel engines
,”
SAE Int. J. Engines
2
,
1857
1872
(
2009
).
14.
T.
Aizawa
and
H.
Kosaka
, “
Laser-induced phosphorescence thermography of combustion chamber wall of diesel engine
,”
SAE Int. J. Fuels Lubr.
1
,
549
558
(
2008
).
15.
K. W.
Tobin
,
S. W.
Allison
,
M. R.
Gates
,
G. J.
Capps
,
D. L.
Beshears
,
M.
Cyr
, and
B. W.
Noel
, “
High-temperature phosphor thermometry of rotating turbine blades
,”
AIAA J.
28
,
1485
1490
(
1990
).
16.
P.
Nau
,
Z.
Yin
,
O.
Lammel
, and
W.
Meier
, “
Wall temperature measurements in gas turbine combustors with thermographic phosphors
,”
J. Eng. Gas Turbines Power
141
,
041021
(
2019
).
17.
J. P.
Feist
,
a. L.
Heyes
, and
S.
Seefelt
, “
Thermographic phosphor thermometry for film cooling studies in gas turbine combustors
,”
Proc. Inst. Mech. Eng. Part A
217
,
193
200
(
2003
).
18.
J. P.
Feist
,
A. L.
Heyes
, and
S.
Seefeldt
, “
Thermographic phosphors for gas turbines: instrumentation development and measurement uncertainties
,” in
11th International Symposium on Application of Laser Technique to Fluid Mechanics
(
2002
).
19.
M.
Lawrence
,
H.
Zhao
, and
L.
Ganippa
, “
Gas phase thermometry of hot turbulent jets using laser induced phosphorescence
,”
Opt. Express
21
,
12260
12281
(
2013
).
20.
J. P. J.
Van Lipzig
,
M.
Yu
,
N. J.
Dam
,
C. C. M.
Luijten
, and
L. P. H.
De Goey
, “
Gas-phase thermometry in a high-pressure cell using BaMgAl10O17:Eu as a thermographic phosphor
,”
Appl. Phys. B
111
,
469
481
(
2013
).
21.
A.
Omrane
,
P.
Petersson
,
M.
Aldén
, and
M. A.
Linne
, “
Simultaneous 2D flow velocity and gas temperature measurements using thermographic phosphors
,”
Appl. Phys. B
92
,
99
102
(
2008
).
22.
B.
Fond
,
C.
Abram
,
A. L.
Heyes
,
A. M.
Kempf
, and
F.
Beyrau
, “
Simultaneous temperature, mixture fraction and velocity imaging in turbulent flows using thermographic phosphor tracer particles
,”
Opt. Express
20
,
22118
22133
(
2012
).
23.
P. J.
Potts
and
P. C.
Webb
, “
X-ray fluorescence spectrometry
,”
J. Geochem. Explor.
44
,
251
296
(
1992
).
24.
R.
Jenkins
,
X-Ray Fluorescence Spectrometry
, 2nd ed. (
Wiley-Interscience
,
New York
,
1999
).
25.
F.
de Groot
and
A.
Kotani
,
Core Level Spectroscopy of Solids
(
CRC Press
,
Boca Raton, FL
,
2008
).
26.
G.
Vankó
,
T.
Neisius
,
G.
Molnár
,
F.
Renz
,
S.
Kárpáti
,
A.
Shukla
, and
F. M. F.
De Groot
, “
Probing the 3D spin momentum with x-ray emission spectroscopy: The case of molecular-spin transitions
,”
J. Phys. Chem. B
110
,
11647
11653
(
2006
).
27.
G.
Vankó
,
J.-P.
Rueff
,
A.
Mattila
,
Z.
Németh
, and
A.
Shukla
, “
Temperature- and pressure-induced spin-state transitions in LaCoO3
,”
Phys. Rev. B
73
,
24424
(
2006
).
28.
D. P.
Kozlenko
,
N. O.
Golosova
,
Z.
Jirák
,
L. S.
Dubrovinsky
,
B. N.
Savenko
,
M. G.
Tucker
,
Y. L.
Godec
, and
V. P.
Glazkov
, “
Temperature- and pressure-driven spin-state transitions in LaCoO3
,”
Phys. Rev. B
75
,
64422
(
2007
).
29.
J. P.
Rueff
and
A.
Shukla
, “
Inelastic x-ray scattering by electronic excitations under high pressure
,”
Rev. Mod. Phys.
82
,
847
896
(
2010
).
30.
H. K.
Mao
,
X. J.
Chen
,
Y.
Ding
,
B.
Li
, and
L.
Wang
, “
Solids, liquids, and gases under high pressure
,”
Rev. Mod. Phys.
90
,
15007
(
2018
).
31.
A.
Mattila
,
T.
Pylkkänen
,
J. P.
Rueff
,
S.
Huotari
,
G.
Vankó
,
M.
Hanfland
,
M.
Lehtinen
, and
K.
Hämäläinen
, “
Pressure induced magnetic transition in siderite FeCO3 studied by x-ray emission spectroscopy
,”
J. Phys. Condens. Matter.
19
,
386206
(
2007
).
32.
J.
Brübach
,
A.
Dreizler
, and
J.
Janicka
, “
Gas compositional and pressure effects on thermographic phosphor thermometry
,”
Meas. Sci. Technol.
18
,
764
770
(
2007
).
33.
E. R.
Westphal
,
A. D.
Brown
,
E. C.
Quintana
,
A. L.
Kastengren
,
S. F.
Son
,
T. R.
Meyer
, and
K. N. G.
Hoffmeister
, “
Visible emission spectra of thermographic phosphors under x-ray excitation
,”
Meas. Sci. Technol.
32
,
094008
(
2021
).
34.
M. R.
Cates
,
K. W.
Tobin
, and
D.
Barton Smith
, “
Evaluation of thermographic phosphor technology for aerodynamic model testing
,”
Technical Report No. ORNL/ATD-40ON: DE91005631
(
Oak Ridge National Lab
.,
TN
,
1990
).
35.
S.
Allison
,
M.
Cates
, and
D.
Beshears
, “
A survey of thermally sensitive phosphors for pressure sensitive paint applications
,” in
Proceedings of the International Instrumentation Symposium
(
IAEA
,
2000
), pp.
29
38
.
36.
C.
Abram
,
B.
Fond
, and
F.
Beyrau
, “
High-precision flow temperature imaging using ZnO thermographic phosphor tracer particles
,”
Opt. Express
23
,
19453
19468
(
2015
).
37.
M.
Nikl
, “
Scintillation detectors for x-rays
,”
Meas. Sci. Technol.
17
,
R37
R54
(
2006
).
38.
C. W. E.
Van Eijk
, “
Inorganic scintillators for medical imaging
,”
Phys. Med. Biol.
47
,
R85
R106
(
2002
).
39.
P. A.
Rodnyi
,
Physical Processes in Inorganic Scintillators
(
CRC Press
,
Boca Raton, FL
,
1997
).

Supplementary Material

You do not currently have access to this content.