Ferroelectric HfO2-based thin films, which have been attracting a great deal attention because of their potential use in various applications, are known for their unique properties, such as a large time-dependent imprint and wake-up effect, which differentiate them from conventional ferroelectric materials. In this study, direct piezoelectric measurement was employed to investigate the state of polarization during the retention and wake-up process without applying an electric field. The polarization-electric field hysteresis loop of a sputtered Hf0.5Zr0.5O2 (HZO) film with a thickness of 10 nm showed a time-dependent imprint at room temperature during polarization retention, and the internal electric field that generated the imprint gradually increased from 0.05 to 0.6 MV/cm. While a space charge density of more than 1 μC/cm2 is required to form such an internal electric field, it was found that the magnitude of the direct piezoelectric response did not change at all during polarization retention. On the other hand, both the remanent polarization and direct piezoelectric response increased during the wake-up process. Based on the difference in the variation over time of these two characteristics, we concluded that the non-ferroelectric layer exists at the interface between the HZO film and TaN electrode and gradually transitions to ferroelectric phases through the electric field cycle.

1.
T. S.
Böscke
,
J.
Müller
,
D.
Bräuhaus
,
U.
Schröder
, and
U.
Böttger
,
Appl. Phys. Lett.
99
,
102903
(
2011
).
2.
P.
Polakowski
,
S.
Riedel
,
W.
Weinreich
,
M.
Rudolf
,
J.
Sundqvist
,
K.
Seidel
, and
J.
Muller
, in
2014 IEEE 6th International Memory Work
shop (
IEEE
,
2014
), pp.
1
4
.
3.
R.
Ichihara
,
K.
Suzuki
,
H.
Kusai
,
K.
Ariyoshi
,
K.
Akari
,
K.
Takano
,
K.
Matsuo
,
Y.
Kamiya
,
K.
Takahashi
,
H.
Miyazawa
,
Y.
Kamimuta
,
K.
Sakuma
, and
M.
Saitoh
, in
2020 IEEE Symposium on VLSI Technol
ogy (
IEEE
,
2020
), pp.
1
2
.
4.
K.
Toprasertpong
,
Z.-Y.
Lin
,
T.-E.
Lee
,
M.
Takenaka
, and
S.
Takagi
, in
2020 IEEE Symposium VLSI on Technol
ogy (
IEEE
,
2020
), pp.
1
2
.
5.
C.
Chan
,
K.
Chen
,
H.
Peng
, and
Y.
Wu
, in
2020 IEEE Symposium on VLSI Technol
ogy (
IEEE
,
2020
), pp.
1
2
.
6.
A. J.
Tan
,
M.
Pesic
,
L.
Larcher
,
Y.-H.
Liao
,
L.-C.
Wang
,
J.-H.
Bae
,
C.
Hu
, and
S.
Salahuddin
, in
2020 IEEE Symposium on VLSI Technol
ogy (
IEEE
,
2020
), pp.
1
2
.
7.
K.
Ni
,
X.
Li
,
J. A.
Smith
,
M.
Jerry
, and
S.
Datta
,
IEEE Electron Device Lett.
39
,
1656
(
2018
).
8.
T.
Ali
,
P.
Polakowski
,
S.
Riedel
,
T.
Büttner
,
T.
Kämpfe
,
M.
Rudolph
,
B.
Pätzold
,
K.
Seidel
,
D.
Löhr
,
R.
Hoffmann
,
M.
Czernohorsky
,
K.
Kühnel
,
X.
Thrun
,
N.
Hanisch
,
P.
Steinke
,
J.
Calvo
, and
J.
Müller
,
Appl. Phys. Lett.
112
,
222903
(
2018
).
9.
X.
Tian
and
A.
Toriumi
, in
2017 IEEE Electron Devices Technology and Manufacturing Conference
(
IEEE
,
2017
), pp.
36
64
.
10.
U.
Schroeder
,
C.
Richter
,
M. H.
Park
,
T.
Schenk
,
M.
Pešić
,
M.
Hoffmann
,
F. P. G.
Fengler
,
D.
Pohl
,
B.
Rellinghaus
,
C.
Zhou
,
C.-C.
Chung
,
J. L.
Jones
, and
T.
Mikolajick
,
Inorg. Chem.
57
,
2752
(
2018
).
11.
J.
Lyu
,
I.
Fina
,
R.
Solanas
,
J.
Fontcuberta
, and
F.
Sánchez
,
Appl. Phys. Lett.
113
,
082902
(
2018
).
12.
A. G.
Chernikova
,
M. G.
Kozodaev
,
D. V.
Negrov
,
E. V.
Korostylev
,
M. H.
Park
,
U.
Schroeder
,
C. S.
Hwang
, and
A. M.
Markeev
,
ACS Appl. Mater. Interfaces
10
,
2701
(
2018
).
13.
S.
Mueller
,
J.
Muller
,
U.
Schroeder
, and
T.
Mikolajick
,
IEEE Transactions on Device and Materials Reliability
13
,
93
(
2013
).
14.
S. S.
Fields
,
S. W.
Smith
,
P. J.
Ryan
,
S. T.
Jaszewski
,
I. A.
Brummel
,
A.
Salanova
,
G.
Esteves
,
S. L.
Wolfley
,
M. D.
Henry
,
P. S.
Davids
, and
J. F.
Ihlefeld
,
ACS Appl. Mater. Interfaces
12
,
26577
(
2020
).
15.
Y. A.
Genenko
,
J.
Glaum
,
M. J.
Hoffmann
, and
K.
Albe
,
Mater. Sci. Eng. B
192
,
52
(
2015
).
16.
T.
Lu
,
Y.
Tian
,
A.
Studer
,
Q.
Li
,
R. L.
Withers
,
L.
Jin
,
D.
Yu
,
Z.
Xu
,
X.
Wei
, and
Y.
Liu
,
Chem. Mater.
32
,
6456
(
2020
).
17.
J. C.
Choi
,
M. S.
Song
,
K.
Lee
,
K.
Park
,
J.
Park
,
H.
Lee
,
J. H.
Lee
, and
S. C.
Chae
,
Curr. Appl. Phys.
20
,
746
(
2020
).
18.
A.
Shekhawat
,
G.
Walters
,
C.-C.
Chung
,
R.
Garcia
,
Y.
Liu
,
J.
Jones
,
T.
Nishida
, and
S.
Moghaddam
,
ECS J. Solid State Sci. Technol.
9
,
024011
(
2020
).
19.
P. D.
Lomenzo
,
Q.
Takmeel
,
C.
Zhou
,
C. M.
Fancher
,
E.
Lambers
,
N. G.
Rudawski
,
J. L.
Jones
,
S.
Moghaddam
, and
T.
Nishida
,
J. Appl. Phys.
117
,
134105
(
2015
).
20.
A.
Chouprik
,
M.
Spiridonov
,
S.
Zarubin
,
R.
Kirtaev
,
V.
Mikheev
,
Y.
Lebedinskii
,
S.
Zakharchenko
, and
D.
Negrov
,
ACS Appl. Electron. Mater.
1
,
275
(
2019
).
21.
F. P. G.
Fengler
,
M.
Hoffmann
,
S.
Slesazeck
,
T.
Mikolajick
, and
U.
Schroeder
,
J. Appl. Phys.
123
,
204101
(
2018
).
22.
P.
Buragohain
,
A.
Erickson
,
P.
Kariuki
,
T.
Mittmann
,
C.
Richter
,
P. D.
Lomenzo
,
H.
Lu
,
T.
Schenk
,
T.
Mikolajick
,
U.
Schroeder
, and
A.
Gruverman
,
ACS Appl. Mater. Interfaces
11
,
35115
(
2019
).
23.
Y.
Higashi
,
B.
Kaczer
,
A. S.
Verhulst
,
B. J.
O'Sullivan
,
N.
Ronchi
,
S. R. C.
McMitchell
,
K.
Banerjee
,
L.
Di Piazza
,
M.
Suzuki
,
D.
Linten
, and
J.
Van Houdt
,
IEEE Trans. Electron Devices
67
,
4911
(
2020
).
24.
C.
Zacharaki
,
P.
Tsipas
,
S.
Chaitoglou
,
L.
Bégon-Lours
,
M.
Halter
, and
A.
Dimoulas
,
Appl. Phys. Lett.
117
,
212905
(
2020
).
25.
D.
Zhou
,
J.
Xu
,
Q.
Li
,
Y.
Guan
,
F.
Cao
,
X.
Dong
,
J.
Müller
,
T.
Schenk
, and
U.
Schröder
,
Appl. Phys. Lett.
103
,
192904
(
2013
).
26.
T. Y.
Lee
,
K.
Lee
,
H. H.
Lim
,
M. S.
Song
,
S. M.
Yang
,
H. K.
Yoo
,
D. I.
Suh
,
Z.
Zhu
,
A.
Yoon
,
M. R.
MacDonald
,
X.
Lei
,
H. Y.
Jeong
,
D.
Lee
,
K.
Park
,
J.
Park
, and
S. C.
Chae
,
ACS Appl. Mater. Interfaces
11
,
3142
(
2019
).
27.
P.
Jiang
,
Q.
Luo
,
X.
Xu
,
T.
Gong
,
P.
Yuan
,
Y.
Wang
,
Z.
Gao
,
W.
Wei
,
L.
Tai
, and
H.
Lv
,
Adv. Electron. Mater.
7
,
2000728
(
2021
).
28.
S.
Migita
,
H.
Ota
,
H.
Yamada
,
K.
Shibuya
,
A.
Sawa
, and
A.
Toriumi
,
Jpn. J. Appl. Phys., Part 1
57
,
04FB01
(
2018
).
29.
J. F.
Shepard
,
P. J.
Moses
, and
S.
Trolier-McKinstry
,
Sens. Actuators, A
71
,
133
(
1998
).
30.
M.-A.
Dubois
and
P.
Muralt
,
Sens. Actuators, A
77
,
106
(
1999
).
31.
M.
Grossmann
,
O.
Lohse
,
D.
Bolten
,
U.
Boettger
,
T.
Schneller
, and
R.
Waser
,
J. Appl. Phys.
92
,
2680
(
2002
).
32.
M.
Pešić
,
F. P. G.
Fengler
,
L.
Larcher
,
A.
Padovani
,
T.
Schenk
,
E. D.
Grimley
,
X.
Sang
,
J. M.
LeBeau
,
S.
Slesazeck
,
U.
Schroeder
, and
T.
Mikolajick
,
Adv. Funct. Mater.
26
,
4601
(
2016
).
33.
E. D.
Grimley
,
T.
Schenk
,
X.
Sang
,
M.
Pešić
,
U.
Schroeder
,
T.
Mikolajick
, and
J. M.
LeBeau
,
Adv. Electron. Mater.
2
,
1600173
(
2016
).

Supplementary Material

You do not currently have access to this content.