Spin–orbit (SO) magnetic fields caused by the Dresselhaus SO interaction in slightly misoriented (110) InGaAs/InAlAs quantum wells (QWs) are investigated using the time-resolved and spatially resolved optical Kerr rotation technique. The Dresselhaus SO magnetic field is directed along the in-plane in the (001) QWs and along the out-of-plane in the (110) QWs. On the contrary, in QWs grown on a slightly misoriented (110) substrate, the out-of-plane and in-plane components of the Dresselhaus SO magnetic field coexist. In this study, the strong out-of-plane and the in-plane SO magnetic fields peculiar to the misoriented (110) InGaAs QWs are revealed at room temperature by analyzing spatially resolved diffusion-driven spin precession dynamics with a diagonally applied external magnetic field. Based on the scan position dependence of the spin precession frequency induced by the SO magnetic field, the simultaneous observations of the out-of-plane and the in-plane SO magnetic fields are achieved and Dresselhaus SO parameter is extracted to be 1.9×1012 eV m. This value accounts for the scan position dependencies with various magnetic fields and reveals the reliability of the extracted SO parameter.

1.
I.
Žutić
,
J.
Fabian
, and
S. D.
Sarma
,
Rev. Mod. Phys.
76
,
323
(
2004
).
2.
D. D.
Awschalom
and
M. E.
Flatte
,
Nat. Phys.
3
,
153
(
2007
).
3.
J.
Wunderlich
,
B.-G.
Park
,
A. C.
Irvine
,
L. P.
Zârbo
,
E.
Rozkotová
,
P.
Nemec
,
V.
Novák
,
J.
Sinova
, and
T.
Jungwirth
,
Science
330
,
1801
(
2010
).
4.
D.
Loss
and
D. P.
DiVincenzo
,
Phys. Rev. A
57
,
120
(
1998
).
5.
S.
Datta
and
B.
Das
,
Appl. Phys. Lett.
56
,
665
(
1990
).
6.
J.
Nitta
,
T.
Akazaki
, and
H.
Takayanagi
,
Phys. Rev. Lett.
78
,
1335
(
1997
).
7.
M.
Studer
,
G.
Salis
,
K.
Ensslin
,
D. C.
Driscoll
, and
A. C.
Gossard
,
Phys. Rev. Lett.
103
,
027201
(
2009
).
8.
Y.
Kato
,
R. C.
Myers
,
A. C.
Gossard
, and
D. D.
Awschalom
,
Nature
427
,
50
(
2004
).
9.
L.
Meier
,
G.
Salis
,
I.
Shorubalko
,
E.
Gini
,
S.
Schön
, and
K.
Ensslin
,
Nat. Phys.
3
,
650
(
2007
).
10.
M.
Studer
,
M. P.
Walser
,
S.
Baer
,
H.
Rusterholz
,
S.
Schön
,
D.
Schuh
,
W.
Wegscheider
,
K.
Ensslin
, and
G.
Salis
,
Phys. Rev. B
82
,
235320
(
2010
).
11.
H.
Sanada
,
T.
Sogawa
,
H.
Gotoh
,
K.
Onomitsu
,
M.
Kohda
,
J.
Nitta
, and
P. V.
Santos
,
Phys. Rev. Lett.
106
,
216602
(
2011
).
12.
E. I.
Rashba
,
Sov. Phys. Solid State
2
,
1109
(
1960
).
13.
G.
Dresselhaus
,
Phys. Rev.
100
,
580
(
1955
).
14.
M. I.
D'yakonov
and
V. Y.
Kachorovskii
,
Sov. Phys. Semicond.
20
,
110
(
1986
).
15.
M. I.
D'yakonov
and
V. I.
Perel
,
Sov. Phys. Solid State
13
,
3023
(
1972
).
16.
Y.
Ohno
,
R.
Terauchi
,
T.
Adachi
,
F.
Matsukura
, and
H.
Ohno
,
Phys. Rev. Lett.
83
,
4196
(
1999
).
17.
S.
Döhrmann
,
D.
Hägele
,
J.
Rudolph
,
M.
Bichler
,
D.
Schuh
, and
M.
Oestreich
,
Phys. Rev. Lett.
93
,
147405
(
2004
).
18.
K.
Morita
,
H.
Sanada
,
S.
Matsuzaka
,
C.
Hu
,
Y.
Ohno
, and
H.
Ohno
,
Appl. Phys. Lett.
87
,
171905
(
2005
).
19.
L.
Schreiber
,
D.
Duda
,
B.
Beschoten
,
G.
Güntherodt
,
H.-P.
Schönherr
, and
J.
Herfort
,
Phys. Rev. B
75
,
193304
(
2007
).
20.
Y. S.
Chen
,
S.
Fält
,
W.
Wegscheider
, and
G.
Salis
,
Phys. Rev. B
90
,
121304
(
2014
).
21.
S.
Koh
,
A.
Nakanishi
, and
H.
Kawaguchi
,
Appl. Phys. Lett.
97
,
081111
(
2010
).
22.
M. P.
Walser
,
C.
Reichl
,
W.
Wegscheider
, and
G.
Salis
,
Nat. Phys.
8
,
757
(
2012
).
23.
J.
Ishihara
,
Y.
Ohno
, and
H.
Ohno
,
Appl. Phys. Express
7
,
013001
(
2014
).
24.
G.
Salis
,
M. P.
Walser
,
P.
Altmann
,
C.
Reichl
, and
W.
Wegscheider
,
Phys. Rev. B
89
,
045304
(
2014
).
25.
M.
Kohda
,
P.
Altmann
,
D.
Schuh
,
S. D.
Ganichev
,
W.
Wegscheider
, and
G.
Salis
,
Appl. Phys. Lett.
107
,
172402
(
2015
).
26.
T.
Henn
,
L.
Czornomaz
, and
G.
Salis
,
Appl. Phys. Lett.
109
,
152104
(
2016
).
27.
F.
Passmann
,
S.
Anghel
,
T.
Tischler
,
A. V.
Poshakinskiy
,
S. A.
Tarasenko
,
G.
Karczewski
,
T.
Wojtowicz
,
A. D.
Bristow
, and
M.
Betz
,
Phys. Rev. B
97
,
201413(R)
(
2018
).
28.
Y.
Tanaka
,
Y.
Kunihashi
,
H.
Sanada
,
H.
Gotoh
,
K.
Onomitsu
,
M.
Kohda
,
J.
Nitta
, and
T.
Sogawa
,
Appl. Phys. Express
12
,
013001
(
2019
).
29.
T.
Saito
,
A.
Aoki
,
J.
Nitta
, and
M.
Kohda
,
Appl. Phys. Lett.
115
,
052402
(
2019
).
30.
K.
Kawaguchi
,
T.
Fukasawa
,
I.
Takazawa
,
H.
Shida
,
Y.
Saito
,
D.
Iizasa
,
T.
Saito
,
T.
Kitada
,
Y.
Ishitani
,
M.
Kohda
, and
K.
Morita
,
Appl. Phys. Lett.
115
,
172406
(
2019
).
31.
N.
Yokota
,
Y.
Yasuda
,
K.
Ikeda
, and
H.
Kawaguchi
,
J. Appl. Phys.
116
,
023507
(
2014
).
32.
Y.
Yasuda
,
S.
Koh
,
K.
Ikeda
, and
H.
Kawaguchi
,
J. Cryst. Growth
364
,
95
(
2013
).
33.
K.
Morita
,
A.
Okumura
,
H.
Takaiwa
,
I.
Takazawa
,
T.
Oda
,
T.
Kitada
,
M.
Kohda
, and
Y.
Ishitani
,
Appl. Phys. Lett.
115
,
012404
(
2019
).
34.
N.
Yokota
,
Y.
Aoshima
,
K.
Ikeda
, and
H.
Kawaguchi
,
Appl. Phys. Lett.
104
,
072406
(
2014
).
35.
R.
Winkler
,
Spin-Orbit Coupling in Two-Dimensional Electron and Hole Systems
(
Springer
,
2003
).
36.
Y.
Kunihashi
,
H.
Sanada
,
Y.
Tanaka
,
H.
Gotoh
,
K.
Onomitsu
,
K.
Nakagawara
,
M.
Kohda
,
J.
Nitta
, and
T.
Sogawa
,
Phys. Rev. Lett.
119
,
187703
(
2017
).

Supplementary Material

You do not currently have access to this content.