Simple and direct prototyping methods are ideal for large-scale delivery of cognitive photonic hardware. Here, we choose ultrafast laser writing as a direct fabrication technique to later demonstrate all-optical synaptic-like performance along the laser-written waveguides in a chalcogenide glass. Neuronal communication protocols, such as excitatory and inhibitory responses, temporal summations, and spike-timing-dependent plasticity, are shown in the glass chip. This work manifests the potential for large-scale delivery of fully integrated photonic chips based on cognitive principles by single-step fabrication procedures.
References
1.
J.
Zhu
, T.
Zhang
, Y.
Yang
, and R.
Huang
, “A comprehensive review on emerging artificial neuromorphic devices
,” Appl. Phys. Rev.
7
, 011312
(2020
).2.
P. R.
Prucnal
and B. J.
Shastri
, Neuromorphic Photonics
(CRC Press
, 2017
).3.
R. A.
Nawrocki
, R. M.
Voyles
, and S. E.
Shaheen
, “A mini review of neuromorphic architectures and implementations
,” IEEE Trans. Electron Devices
63
, 3819
–3829
(2016
).4.
Z.
Wang
, S.
Joshi
, S. E.
Savel'ev
, H.
Jiang
, R.
Midya
, P.
Lin
, M.
Hu
, N.
Ge
, J. P.
Strachan
, Z.
Li
et al, “Memristors with diffusive dynamics as synaptic emulators for neuromorphic computing
,” Nat. Mater.
16
, 101
–108
(2017
).5.
S.
Majumdar
, H.
Tan
, Q. H.
Qin
, and S.
van Dijken
, “Energy-efficient organic ferroelectric tunnel junction memristors for neuromorphic computing
,” Adv. Electron. Mater.
5
, 1800795
(2019
).6.
Y.
Li
, Z.
Wang
, R.
Midya
, Q.
Xia
, and J. J.
Yang
, “Review of memristor devices in neuromorphic computing: Materials sciences and device challenges
,” J. Phys. D
51
, 503002
(2018
).7.
E.
Goi
, Q.
Zhang
, X.
Chen
, H.
Luan
, and M.
Gu
, “Perspective on photonic memristive neuromorphic computing
,” PhotoniX
1
, 1
–26
(2020
).8.
C.-S.
Yang
, D.-S.
Shang
, N.
Liu
, E. J.
Fuller
, S.
Agrawal
, A. A.
Talin
, Y.-Q.
Li
, B.-G.
Shen
, and Y.
Sun
, “All-solid-state synaptic transistor with ultralow conductance for neuromorphic computing
,” Adv. Funct. Mater.
28
, 1804170
(2018
).9.
I.
Sanchez Esqueda
, X.
Yan
, C.
Rutherglen
, A.
Kane
, T.
Cain
, P.
Marsh
, Q.
Liu
, K.
Galatsis
, H.
Wang
, and C.
Zhou
, “Aligned carbon nanotube synaptic transistors for large-scale neuromorphic computing
,” ACS Nano
12
, 7352
–7361
(2018
).10.
S.
Jiang
, S.
Nie
, Y.
He
, R.
Liu
, C.
Chen
, and Q.
Wan
, “Emerging synaptic devices: From two-terminal memristors to multiterminal neuromorphic transistors
,” Mater. Today Nano
8
, 100059
(2019
).11.
V. K.
Sangwan
and M. C.
Hersam
, “Neuromorphic nanoelectronic materials
,” Nat. Nanotechnol.
15
, 517
–528
(2020
).12.
S.
Dai
, Y.
Zhao
, Y.
Wang
, J.
Zhang
, L.
Fang
, S.
Jin
, Y.
Shao
, and J.
Huang
, “Recent advances in transistor-based artificial synapses
,” Adv. Funct. Mater.
29
, 1903700
(2019
).13.
P.
Minzioni
, C.
Lacava
, T.
Tanabe
, J.
Dong
, X.
Hu
, G.
Csaba
, W.
Porod
, G.
Singh
, A. E.
Willner
, A.
Almaiman
et al, “Roadmap on all-optical processing
,” J. Opt.
21
, 063001
(2019
).14.
B.
Gholipour
, P.
Bastock
, C.
Craig
, K.
Khan
, D.
Hewak
, and C.
Soci
, “Amorphous metal-sulphide microfibers enable photonic synapses for brain-like computing
,” Adv. Opt. Mater.
3
, 635
–641
(2015
).15.
Z.
Cheng
, C.
Ríos
, W. H.
Pernice
, C. D.
Wright
, and H.
Bhaskaran
, “On-chip photonic synapse
,” Sci. Adv.
3
, e1700160
(2017
).16.
A. N.
Tait
, T. F.
De Lima
, E.
Zhou
, A. X.
Wu
, M. A.
Nahmias
, B. J.
Shastri
, and P. R.
Prucnal
, “Neuromorphic photonic networks using silicon photonic weight banks
,” Sci. Rep.
7
, 7430
(2017
).17.
I.
Chakraborty
, G.
Saha
, A.
Sengupta
, and K.
Roy
, “Toward fast neural computing using all-photonic phase change spiking neurons
,” Sci. Rep.
8
, 12980
(2018
).18.
M. R.
Vázquez
, V.
Bharadwaj
, B.
Sotillo
, S.-Z. A.
Lo
, R.
Ramponi
, N. I.
Zheludev
, G.
Lanzani
, S. M.
Eaton
, and C.
Soci
, “Optical NP problem solver on laser-written waveguide platform
,” Opt. Express
26
, 702
–710
(2018
).19.
X.-Y.
Xu
, X.-L.
Huang
, Z.-M.
Li
, J.
Gao
, Z.-Q.
Jiao
, Y.
Wang
, R.-J.
Ren
, H.
Zhang
, and X.-M.
Jin
, “A scalable photonic computer solving the subset sum problem
,” Sci. Adv.
6
, eaay5853
(2020
).20.
K.
Wu
, J. G.
De Abajo
, C.
Soci
, P. P.
Shum
, and N. I.
Zheludev
, “An optical fiber network oracle for NP-complete problems
,” Light
3
, e147
(2014
).21.
C.
Roques-Carmes
, Y.
Shen
, C.
Zanoci
, M.
Prabhu
, F.
Atieh
, L.
Jing
, T.
Dubček
, C.
Mao
, M. R.
Johnson
, V.
Čeperić
et al, “Heuristic recurrent algorithms for photonic Ising machines
,” Nat. Commun.
11
, 249
(2020
).22.
K. M.
Davis
, K.
Miura
, N.
Sugimoto
, and K.
Hirao
, “Writing waveguides in glass with a femtosecond laser
,” Opt. Lett.
21
, 1729
–1731
(1996
).23.
R.
Osellame
, G.
Cerullo
, and R.
Ramponi
, Femtosecond Laser Micromachining: Photonic and Microfluidic Devices in Transparent Materials
(Springer Science & Business Media
, 2012
), Vol. 123
.24.
M. R.
Vázquez
, B.
Sotillo
, S.
Rampini
, V.
Bharadwaj
, B.
Gholipour
, P.
Fernández
, R.
Ramponi
, C.
Soci
, and S. M.
Eaton
, “Femtosecond laser inscription of nonlinear photonic circuits in gallium lanthanum sulphide glass
,” J. Phys.
1
, 015006
(2018
).25.
A.
Ganjoo
, K.
Shimakawa
, K.
Kitano
, and E.
Davis
, “Transient photodarkening in amorphous chalcogenides
,” J. Non-Cryst. Solids
299–302
, 917
–923
(2002
).26.
D. E.
Sadava
, D. M.
Hillis
, H. C.
Heller
, and M.
Berenbaum
, Life: The Science of Biology
(Macmillan
, 2009
), Vol. 2
.27.
G. T.
Neske
, S. L.
Patrick
, and B. W.
Connors
, “Contributions of diverse excitatory and inhibitory neurons to recurrent network activity in cerebral cortex
,” J. Neurosci.
35
, 1089
–1105
(2015
).28.
J. C.
Cheng
, N.
Erpelding
, A.
Kucyi
, D. D.
DeSouza
, and K. D.
Davis
, “Individual differences in temporal summation of pain reflect pronociceptive and antinociceptive brain structure and function
,” J. Neurosci.
35
, 9689
–9700
(2015
).29.
J. C.
Magee
, “Dendritic Ih normalizes temporal summation in hippocampal CA1 neurons
,” Nat. Neurosci.
2
, 508
–514
(1999
).30.
J.-Y.
Sun
and L.-G.
Wu
, “Fast kinetics of exocytosis revealed by simultaneous measurements of presynaptic capacitance and postsynaptic currents at a central synapse
,” Neuron
30
, 171
–182
(2001
).31.
D. O.
Hebb
, The Organization of Behavior: A Neuropsychological Theory
(Psychology Press
, 2005
).32.
D. C.
Sati
, A.
Dahshan
, and P.
Sharma
, “Photoinduced effects for amorphous chalcogenide semiconductors
,” Appl. Mater. Today
17
, 142
–158
(2019
).33.
D. W.
Hewak
, D.
Brady
, R. J.
Curry
, G.
Elliott
, C.-C.
Huang
, M.
Hughes
, K.
Knight
, A.
Mairaj
, M.
Petrovich
, R.
Simpson
et al, Chalcogenide Glasses for Photonics Device Applications
(University of Southampton
, 2010
).© 2021 Author(s). Published under an exclusive license by AIP Publishing.
2021
Author(s)
You do not currently have access to this content.