Y-Flash memristors utilize the mature technology of single polysilicon floating gate nonvolatile memories. It can be operated in a two-terminal configuration similar to the other emerging memristive devices, e.g., resistive random-access memory and phase-change memory. Fabricated in production complementary metal-oxide-semiconductor technology, Y-Flash memristors allow excellent reproducibility reflected in high neuromorphic products yields. Working in the subthreshold region, the device can be programmed to a large number of fine-tuned intermediate states in an analog fashion and allows low readout currents (1 nA ∼ 5 μA). However, currently, there are no accurate models to describe the dynamic switching in this type of memristive device and account for multiple operational configurations. In this paper, we provide a physical-based compact model that describes Y-Flash memristor performance in both DC and AC regimes and consistently describes the dynamic program and erase operations. The model is integrated into the commercial circuit design tools and is ready to be used in applications related to neuromorphic computation.

1.
J. J.
Yang
,
D. B.
Strukov
, and
D. R.
Stewart
,
Nat. Nanotechnol.
8
,
13
(
2013
).
2.
W.
Zhang
,
R.
Mazzarello
,
M.
Wuttig
, and
E.
Ma
,
Nat. Rev. Mater.
4
,
150
(
2019
).
3.
B.
Max
,
M.
Hoffmann
,
H.
Mulaosmanovic
,
S.
Slesazeck
, and
T.
Mikolajick
,
ACS Appl. Electron. Mater.
2
,
4023
(
2020
).
4.
Y.
Li
,
J.
Lu
,
D.
Shang
,
Q.
Liu
,
S.
Wu
,
Z.
Wu
,
X.
Zhang
,
J.
Yang
,
Z.
Wang
,
H.
Lv
, and
M.
Liu
,
Adv. Mater.
32
,
2003018
(
2020
).
5.
Y.
van de Burgt
,
E.
Lubberman
,
E. J.
Fuller
,
S. T.
Keene
,
G. C.
Faria
,
S.
Agarwal
,
M. J.
Marinella
,
A. A.
Talin
, and
A.
Salleo
,
Nat. Mater.
16
,
414
(
2017
).
6.
J.
Tang
,
F.
Yuan
,
X.
Shen
,
Z.
Wang
,
M.
Rao
,
Y.
He
,
Y.
Sun
,
X.
Li
,
W.
Zhang
,
Y.
Li
,
B.
Gao
,
H.
Qian
,
G.
Bi
,
S.
Song
,
J. J.
Yang
, and
H.
Wu
,
Adv. Mater.
31
,
1902761
(
2019
).
7.
G. W.
Burr
,
R. M.
Shelby
,
A.
Sebastian
,
S.
Kim
,
S.
Kim
,
S.
Sidler
,
K.
Virwani
,
M.
Ishii
,
P.
Narayanan
,
A.
Fumarola
,
L. L.
Sanches
,
I.
Boybat
,
M. L.
Gallo
,
K.
Moon
,
J.
Woo
,
H.
Hwang
, and
Y.
Leblebici
,
Adv. Phys. X
2
,
89
(
2017
).
8.
D.
Ielmini
and
H.-S. P.
Wong
,
Nat. Electron.
1
,
333
(
2018
).
9.
T.
Gokmen
and
Y.
Vlasov
,
Front. Neurosci.
10
,
333
(
2016
).
10.
P.-Y.
Chen
,
X.
Peng
, and
S.
Yu
, in
2017 IEEE International Electron Devices Meeting (IEDM)
(
IEEE
,
2017
), pp.
6.1.1
6.1.4
.
11.
R.
Dittmann
and
J. P.
Strachan
,
APL Mater.
7
,
110903
(
2019
).
12.
K.
Berggren
,
Q.
Xia
,
K. K.
Likharev
,
D. B.
Strukov
,
H.
Jiang
,
T.
Mikolajick
,
D.
Querlioz
,
M.
Salinga
,
J. R.
Erickson
,
S.
Pi
,
F.
Xiong
,
P.
Lin
,
C.
Li
,
Y.
Chen
,
S.
Xiong
,
B. D.
Hoskins
,
M. W.
Daniels
,
A.
Madhavan
,
J. A.
Liddle
,
J. J.
McClelland
,
Y.
Yang
,
J.
Rupp
,
S. S.
Nonnenmann
,
K.-T.
Cheng
,
N.
Gong
,
M. A.
Lastras-Montaño
,
A. A.
Talin
,
A.
Salleo
,
B. J.
Shastri
,
T. F.
de Lima
,
P.
Prucnal
,
A. N.
Tait
,
Y.
Shen
,
H.
Meng
,
C.
Roques-Carmes
,
Z.
Cheng
,
H.
Bhaskaran
,
D.
Jariwala
,
H.
Wang
,
J. M.
Shainline
,
K.
Segall
,
J. J.
Yang
,
K.
Roy
,
S.
Datta
, and
A.
Raychowdhury
,
Nanotechnology
32
,
012002
(
2021
).
13.
M.
Ziegler
,
M.
Oberländer
,
D.
Schroeder
,
W. H.
Krautschneider
, and
H.
Kohlstedt
,
Appl. Phys. Lett.
101
,
263504
(
2012
).
14.
G.
Malavena
,
M.
Filippi
,
A. S.
Spinelli
, and
C.
Monzio Compagnoni
,
IEEE Trans. Electron Devices
66
,
4727
(
2019
).
15.
Y.
Roizin
and
E.
Pikhay
, “
Memristor using parallel asymmetrical transistors having shared floating gate and diode
,” U.S. patent 9514818 (December 6,
2016
).
16.
L.
Danial
,
E.
Pikhay
,
E.
Herbelin
,
N.
Wainstein
,
V.
Gupta
,
N.
Wald
,
Y.
Roizin
,
R.
Daniel
, and
S.
Kvatinsky
,
Nat. Electron.
2
,
596
(
2019
).
17.
W.
Wang
,
W.
Song
,
P.
Yao
,
Y.
Li
,
J.
Van Nostrand
,
Q.
Qiu
,
D.
Ielmini
, and
J. J.
Yang
,
iScience
23
,
101809
(
2020
).
18.
L.
Danial
,
V.
Gupta
,
E.
Pikhay
,
Y.
Roizin
, and
S.
Kvatinsky
, in
2020 Design, Automation and Test in Europe Conference and Exhibition (DATE)
(
IEEE
,
2020
), pp.
472
477
.
19.
C.
Diorio
,
P.
Hasler
, and
B. A.
Minch
,
IEEE Trans. Electron Devices
43
,
1972
1980
(
1996
).
20.
S.
Tam
,
P.-K.
Ko
, and
C.
Hu
,
IEEE Trans. Electron Devices
31
,
1116
(
1984
).
21.
P.
Pavan
,
R.
Bez
,
P.
Olivo
, and
E.
Zanoni
,
Proc. IEEE
85
,
1248
(
1997
).
22.
K.
Yoshikawa
,
S.
Mori
,
E.
Sakagami
,
Y.
Ohshima
,
Y.
Kaneko
, and
N.
Arai
, in
Technical Digest—International Electron Devices Meeting
(
IEEE
,
1990
), pp.
577
580
.
23.
D.
Ielmini
,
A.
Ghetti
,
A. S.
Spinelli
, and
A.
Visconti
,
IEEE Trans. Electron Devices
53
,
668
(
2006
).
24.
P.
Yao
,
H.
Wu
,
B.
Gao
,
S. B.
Eryilmaz
,
X.
Huang
,
W.
Zhang
,
Q.
Zhang
,
N.
Deng
,
L.
Shi
,
H.-S. P.
Wong
, and
H.
Qian
,
Nat. Commun.
8
,
15199
(
2017
).
25.
T.
Hirtzlin
,
M.
Bocquet
,
B.
Penkovsky
,
J.-O.
Klein
,
E.
Nowak
,
E.
Vianello
,
J.-M.
Portal
, and
D.
Querlioz
,
Front. Neurosci.
13
,
1383
(
2020
).
26.
T. G.
Toledo
,
B.
Perach
,
D.
Soudry
, and
S.
Kvatinsky
, “
Mtj-based hardware synapse design for quantized deep neural networks
,” arXiv:1912.12636 (
2019
).
27.
G. W.
Burr
,
R. M.
Shelby
,
S.
Sidler
,
C. D.
Nolfo
,
J.
Jang
,
I.
Boybat
,
R. S.
Shenoy
,
P.
Narayanan
,
K.
Virwani
,
E. U.
Giacometti
,
B. N.
Kurdi
, and
H.
Hwang
,
IEEE Trans. Electron Devices
62
,
3498
(
2015
).
28.
P.
Yao
,
H.
Wu
,
B.
Gao
,
J.
Tang
,
Q.
Zhang
,
W.
Zhang
,
J. J.
Yang
, and
H.
Qian
,
Nature
577
,
641
(
2020
).
29.
S.
Ambrogio
,
P.
Narayanan
,
H.
Tsai
,
R. M.
Shelby
,
I.
Boybat
,
D.
Nolfo
,
S.
Sidler
,
M.
Giordano
,
M.
Bodini
,
N. C. P.
Farinha
,
B.
Killeen
,
C.
Cheng
,
Y.
Jaoudi
, and
G. W.
Burr
,
Nature
558
,
60
(
2018
).

Supplementary Material

You do not currently have access to this content.