Dielectric elastomers (DEs) are soft and stretchable structures that are typically used as actuators, sensors, and energy harvesters and can perform basic signal processing tasks. Thus, they can be used to create multi-functional and autonomous DE structures, with intrinsic information processing capabilities, that require fewer external components. This contribution introduces how to assemble electronic circuits with DEs, in a similar way to how transistors are employed in conventional electronics. The focus is on the design of digital circuits. At first, parallels between digital signal processing with DEs and with conventional transistors are shown. After describing the differences in the working conditions (e.g., working voltages) of the two structures, it is demonstrated that various design techniques, commonly adopted in conventional electronics, can be used to build DE electronics. The functioning is demonstrated by presenting alternative ways of designing NOR and XOR gates, reducing, in the latter case, the number of components required. Moreover, pass transistor logic is employed to realize a DE multiplexer. This work illustrates a consistent method to realize digital circuits with DEs, and it demonstrates how electronic design techniques can be adapted to work with DEs. It shows that DE circuits can be built starting from their conventional counterpart, obtaining improved devices.

1.
F.
Carpi
,
D.
De Rossi
,
R.
Kornbluh
, and
R.
Pelrine
,
Dielectric Elastomers as Electromechanical Transducers: Fundamentals, Materials, Devices, Models and Applications of an Emerging Electroactive Polymer
(
Elsevier Science & Technology
,
2008
).
2.
Y.
Bar-Cohen
, “
Electroactive polymers as artificial muscles: A review
,”
J. Spacecr. Rockets
39
,
822
827
(
2002
).
3.
U.
Gupta
,
L.
Qin
,
Y.
Wang
,
H.
Godaba
, and
J.
Zhu
, “
Soft robots based on dielectric elastomer actuators: A review
,”
Smart Mater. Struct.
28
,
103002
(
2019
).
4.
T. A.
Gisby
,
S.
Xie
,
E. P.
Calius
, and
I. A.
Anderson
, “
Integrated sensing and actuation of muscle-like actuators
,” in
Electroactive Polymer Actuators and Devices (EAPAD) 2009
, edited by
Y.
Bar-Cohen
and
T.
Wallmersperger
(
SPIE
,
2009
).
5.
T. A.
Gisby
,
B. M.
O'Brien
, and
I. A.
Anderson
, “
Self sensing feedback for dielectric elastomer actuators
,”
Appl. Phys. Lett.
102
,
193703
(
2013
).
6.
I. A.
Anderson
,
T. A.
Gisby
,
T. G.
McKay
,
B. M.
O'Brien
, and
E. P.
Calius
, “
Multi-functional dielectric elastomer artificial muscles for soft and smart machines
,”
J. Appl. Phys.
112
,
041101
(
2012
).
7.
B.
O'Brien
,
T.
Gisby
, and
I. A.
Anderson
, “
Stretch sensors for human body motion
,” in
Electroactive Polymer Actuators and Devices (EAPAD) 2014
, edited by
Y.
Bar-Cohen
(
SPIE
,
2014
).
8.
G.
Moretti
,
S.
Rosset
,
R.
Vertechy
,
I.
Anderson
, and
M.
Fontana
, “
A review of dielectric elastomer generator systems
,”
Adv. Intell. Syst.
2
,
2000125
(
2020
).
9.
B.
Treml
,
A.
Gillman
,
P.
Buskohl
, and
R.
Vaia
, “
Origami mechanologic
,”
Proc. Natl. Acad. Sci.
115
,
6916
6921
(
2018
).
10.
Y.
Jin
,
Y.
Lin
,
A.
Kiani
,
I. D.
Joshipura
,
M.
Ge
, and
M. D.
Dickey
, “
Materials tactile logic via innervated soft thermochromic elastomers
,”
Nat. Commun.
10
,
4187
(
2019
).
11.
E.-F. M.
Henke
,
S.
Schlatter
, and
I. A.
Anderson
, “
Soft dielectric elastomer oscillators driving bioinspired robots
,”
Soft Rob.
4
,
353
366
(
2017
).
12.
B. M.
O'Brien
,
T. G.
McKay
,
S. Q.
Xie
,
E. P.
Calius
, and
I. A.
Anderson
, “
Dielectric elastomer memory
,” in
Electroactive Polymer Actuators and Devices (EAPAD) 2011
, edited by
Y.
Bar-Cohen
and
F.
Carpi
(
SPIE
,
2011
).
13.
K. E.
Wilson
,
E.-F. M.
Henke
,
G. A.
Slipher
, and
I. A.
Anderson
, “
Rubbery logic gates
,”
Extreme Mech. Lett.
9
,
188
194
(
2016
).
14.
K. E.
Wilson
,
E.-F. M.
Henke
,
G. A.
Slipher
, and
I. A.
Anderson
, “
Rubbery computing
,” in
Electroactive Polymer Actuators and Devices (EAPAD) 2017
, edited by
Y.
Bar-Cohen
(
SPIE
,
2017
).
15.
R.
Pelrine
,
R. D.
Kornbluh
,
J.
Eckerle
,
P.
Jeuck
,
S.
Oh
,
Q.
Pei
, and
S.
Stanford
, “
Dielectric elastomers: Generator mode fundamentals and applications
,” in
Smart Structures and Materials 2001: Electroactive Polymer Actuators and Devices
, edited by
Y.
Bar-Cohen
(
SPIE
,
2001
).
16.
G.
Kofod
,
P.
Sommer-Larsen
,
R.
Kornbluh
, and
R.
Pelrine
, “
Actuation response of polyacrylate dielectric elastomers
,”
J. Intell. Mater. Syst. Struct.
14
,
787
793
(
2003
).
17.
X.
Zhao
and
Z.
Suo
, “
Theory of dielectric elastomers capable of giant deformation of actuation
,”
Phys. Rev. Lett.
104
,
178302
(
2010
).
18.
A. I.
Medalia
, “
Electrical conduction in carbon black composites
,”
Rubber Chem. Technol.
59
,
432
454
(
1986
).
19.
B. M.
O'Brien
,
E. P.
Calius
,
T.
Inamura
,
S. Q.
Xie
, and
I. A.
Anderson
, “
Dielectric elastomer switches for smart artificial muscles
,”
Appl. Phys. A
100
,
385
389
(
2010
).
20.
J.
Zhang
,
J.
Ru
,
H.
Chen
,
D.
Li
, and
J.
Lu
, “
Viscoelastic creep and relaxation of dielectric elastomers characterized by a Kelvin-Voigt-Maxwell model
,”
Appl. Phys. Lett.
110
,
044104
(
2017
).
21.
G.-Y.
Gu
,
U.
Gupta
,
J.
Zhu
,
L.-M.
Zhu
, and
X.
Zhu
, “
Modeling of viscoelastic electromechanical behavior in a soft dielectric elastomer actuator
,”
IEEE Trans. Rob.
33
,
1263
1271
(
2017
).
22.
E.-F. M.
Henke
,
K. E.
Wilson
, and
I. A.
Anderson
, “
Modeling of dielectric elastomer oscillators for soft biomimetic applications
,”
Bioinspiration Biomimetics
13
,
046009
(
2018
).
23.
F. B.
Madsen
,
A. E.
Daugaard
,
S.
Hvilsted
, and
A. L.
Skov
, “
The current state of silicone-based dielectric elastomer transducers
,”
Macromol. Rapid Commun.
37
,
378
413
(
2016
).
24.
L.
Romasanta
,
M.
Lopez-Manchado
, and
R.
Verdejo
, “
Increasing the performance of dielectric elastomer actuators: A review from the materials perspective
,”
Prog. Polym. Sci.
51
,
188
211
(
2015
).
25.
A.
Poulin
,
S.
Rosset
, and
H. R.
Shea
, “
Printing low-voltage dielectric elastomer actuators
,”
Appl. Phys. Lett.
107
,
244104
(
2015
).
26.
X.
Ji
,
A. E.
Haitami
,
F.
Sorba
,
S.
Rosset
,
G. T.
Nguyen
,
C.
Plesse
,
F.
Vidal
,
H. R.
Shea
, and
S.
Cantin
, “
Stretchable composite monolayer electrodes for low voltage dielectric elastomer actuators
,”
Sens. Actuators B: Chem.
261
,
135
143
(
2018
).
27.
F. B.
Madsen
,
L.
Yu
, and
A. L.
Skov
, “
Self-healing, high-permittivity silicone dielectric elastomer
,”
ACS Macro Lett.
5
,
1196
1200
(
2016
).
28.
T.
Li
,
C.
Keplinger
,
R.
Baumgartner
,
S.
Bauer
,
W.
Yang
, and
Z.
Suo
, “
Giant voltage-induced deformation in dielectric elastomers near the verge of snap-through instability
,”
J. Mech. Phys. Solids
61
,
611
628
(
2013
).
29.
A.
Sedra
and
K.
Smith
,
Microelectronic Circuits
(
Oxford University Press
,
New York
,
2010
).
30.
J.
Rabaey
,
A.
Chandrakasan
, and
B.
Nikolic
,
Digital Integrated Circuits: A Design Perspective
(
Pearson Education
,
Upper Saddle River, NJ
,
2003
).
31.
S.
Schlatter
,
P.
Illenberger
, and
S.
Rosset
, “
Peta-pico-voltron: An open-source high voltage power supply
,”
HardwareX
4
,
e00039
(
2018
).
You do not currently have access to this content.