The implementation of large-scale fault-tolerant quantum computers calls for the integration of millions of physical qubits with very low error rates. This outstanding engineering challenge may benefit from emerging qubits that are protected from dominating noise sources in the qubits' environment. In addition to different noise reduction techniques, protective approaches typically encode qubits in global or local decoherence-free subspaces, or in dynamical sweet spots of driven systems. We exemplify such protected qubits by reviewing the state-of-art in protected solid-state qubits based on semiconductors, superconductors, and hybrid devices.
References
1.
M. A.
Nielsen
and I. L.
Chuang
, Quantum Computation and Quantum Information
(Cambridge University Press
, 2010
).2.
Quantum Error Correction, edited by
D. A.
Lidar
and T. A.
Brun
(Cambridge University Press
, 2013
).3.
P. W.
Shor
, “Scheme for reducing decoherence in quantum computer memory
,” Phys. Rev. A
52
, R2493
(1995
).4.
A. M.
Steane
, “Error correcting codes in quantum theory
,” Phys. Rev. Lett.
77
, 793
(1996
).5.
E.
Knill
, R.
Laflamme
, R.
Martinez
, and C.
Negrevergne
, “Benchmarking quantum computers: The five-qubit error correcting code
,” Phys. Rev. Lett.
86
, 5811
(2001
).6.
T. D.
Stanescu
, Introduction to Topological Quantum Matter and Quantum Computation
(CRC Press/Taylor & Francis Group
, 2017
).7.
D. A.
Lidar
, I. L.
Chuang
, and K. B.
Whaley
, “Decoherence-free subspaces for quantum computation
,” Phys. Rev. Lett.
81
, 2594
(1998
).8.
J. M.
Gertler
, B.
Baker
, J.
Li
, S.
Shirol
, J.
Koch
, and C.
Wang
, “Protecting a bosonic qubit with autonomous quantum error correction
,” Nature
590
, 243
(2021
).9.
Z.
Huang
, P. S.
Mundada
, A.
Gyenis
, D. I.
Schuster
, A. A.
Houck
, and J.
Koch
, “Engineering dynamical sweet spots to protect qubits from noise
,” Phys. Rev. Appl.
15
, 034065
(2021
).10.
P. S.
Mundada
, A.
Gyenis
, Z.
Huang
, J.
Koch
, and A. A.
Houck
, “Floquet-engineered enhancement of coherence times in a driven fluxonium qubit
,” Phys. Rev. Appl.
14
, 054033
(2020
).11.
N.
Didier
, E. A.
Sete
, J.
Combes
, and M. P.
da Silva
, “ac flux sweet spots in parametrically modulated superconducting qubits
,” Phys. Rev. Appl.
12
, 054015
(2019
).12.
A.
Chatterjee
, P.
Stevenson
, S. D.
Franceschi
, A.
Morello
, N. P. de
Leon
, and F.
Kuemmeth
, “Semiconductor qubits in practice
,” Nat. Rev. Phys.
3
, 157
(2021
).13.
R.
Hanson
, L. P.
Kouwenhoven
, J. R.
Petta
, S.
Tarucha
, and L. M.
Vandersypen
, “Spins in few-electron quantum dots
,” Rev. Mod. Phys.
79
, 1217
(2007
).14.
F. A.
Zwanenburg
, A. S.
Dzurak
, A.
Morello
, M. Y.
Simmons
, L. C. L.
Hollenberg
, G.
Klimeck
, S.
Rogge
, S. N.
Coppersmith
, and M. A.
Eriksson
, “Silicon quantum electronics
,” Rev. Mod. Phys.
85
, 961
(2013
).15.
G.
Scappucci
, C.
Kloeffel
, F. A.
Zwanenburg
, D.
Loss
, M.
Myronov
, J.-J.
Zhang
, S. D.
Franceschi
, G.
Katsaros
, and M.
Veldhorst
, “The germanium quantum information route
,” Nat. Rev. Mat.
6
, 926
(2021
).16.
P.
Stano
and D.
Loss
, “Review of performance metrics of spin qubits in gated semiconducting nanostructures
,” arXiv:2107.06485 (2021
).17.
D. A.
Lidar
and K. B.
Whaley
, “Decoherence-free subspaces and subsystems
,” in Irreversible Quantum Dynamics
, edited by F.
Benatti
and R.
Floreanini
(Springer
, Berlin
, 2003
), pp. 83
–120
.18.
J.
Levy
, “Universal quantum computation with spin-1/2 pairs and Heisenberg exchange
,” Phys. Rev. Lett.
89
, 147902
(2002
).19.
J. R.
Petta
, A. C.
Johnson
, J. M.
Taylor
, E. A.
Laird
, A.
Yacoby
, M. D.
Lukin
, C. M.
Marcus
, M. P.
Hanson
, and A. C.
Gossard
, “Coherent manipulation of coupled electron spins in semiconductor quantum dots
,” Science
309
, 2180
(2005
).20.
G. M.
Palma
, K.-A.
Suominen
, and A.
Ekert
, “Quantum computers and dissipation
,” Proc. R. Soc. London, A
452
, 567
(1996
).21.
L.-M.
Duan
and G.-C.
Guo
, “Reducing decoherence in quantum-computer memory with all quantum bits coupling to the same environment
,” Phys. Rev. A
57
, 737
(1998
).22.
F.
Martins
, F. K.
Malinowski
, P. D.
Nissen
, E.
Barnes
, S.
Fallahi
, G. C.
Gardner
, M. J.
Manfra
, C. M.
Marcus
, and F.
Kuemmeth
, “Noise suppression using symmetric exchange gates in spin qubits
,” Phys. Rev. Lett.
116
, 116801
(2016
).23.
M. D.
Reed
, B. M.
Maune
, R. W.
Andrews
, M. G.
Borselli
, K.
Eng
, M. P.
Jura
, A. A.
Kiselev
, T. D.
Ladd
, S. T.
Merkel
, I.
Milosavljevic
, E. J.
Pritchett
, M. T.
Rakher
, R. S.
Ross
, A. E.
Schmitz
, A.
Smith
, J. A.
Wright
, M. F.
Gyure
, and A. T.
Hunter
, “Reduced sensitivity to charge noise in semiconductor spin qubits via symmetric operation
,” Phys. Rev. Lett.
116
, 110402
(2016
).24.
E.
Knill
, R.
Laflamme
, and L.
Viola
, “Theory of quantum error correction for general noise
,” Phys. Rev. Lett.
84
, 2525
(2000
).25.
S. D.
Filippo
, “Quantum computation using decoherence-free states of the physical operator algebra
,” Phys. Rev. A
62
, 052307
(2000
).26.
C.-P.
Yang
and J.
Gea-Banacloche
, “Three-qubit quantum error-correction scheme for collective decoherence
,” Phys. Rev. A
63
, 022311
(2001
).27.
D. P.
DiVincenzo
, D.
Bacon
, J.
Kempe
, G.
Burkard
, and K. B.
Whaley
, “Universal quantum computation with the exchange interaction
,” Nature
408
, 339
(2000
).28.
E. A.
Laird
, J. M.
Taylor
, D. P.
DiVincenzo
, C. M.
Marcus
, M. P.
Hanson
, and A. C.
Gossard
, “Coherent spin manipulation in an exchange-only qubit
,” Phys. Rev. B
82
, 075403
(2010
).29.
J.
Medford
, J.
Beil
, J. M.
Taylor
, E. I.
Rashba
, H.
Lu
, A. C.
Gossard
, and C. M.
Marcus
, “Quantum-dot-based resonant exchange qubit
,” Phys. Rev. Lett.
111
, 050501
(2013
).30.
J.
Medford
, J.
Beil
, J. M.
Taylor
, S. D.
Bartlett
, A. C.
Doherty
, E. I.
Rashba
, D. P.
DiVincenzo
, H.
Lu
, A. C.
Gossard
, and C. M.
Marcus
, “Self-consistent measurement and state tomography of an exchange-only spin qubit
,” Nat. Nanotechnol.
8
, 654
(2013
).31.
M.
Russ
and G.
Burkard
, “Three-electron spin qubits
,” J. Phys.: Condens. Matter
29
, 393001
(2017
).32.
J.
Fei
, J.-T.
Hung
, T. S.
Koh
, Y.-P.
Shim
, S. N.
Coppersmith
, X.
Hu
, and M.
Friesen
, “Characterizing gate operations near the sweet spot of an exchange-only qubit
,” Phys. Rev. B
91
, 205434
(2015
).33.
M.
Russ
, F.
Ginzel
, and G.
Burkard
, “Coupling of three-spin qubits to their electric environment
,” Phys. Rev. B
94
, 165411
(2016
).34.
Y.-P.
Shim
and C.
Tahan
, “Charge-noise-insensitive gate operations for always-on, exchange-only qubits
,” Phys. Rev. B
93
, 121410
(2016
).35.
C.
Zhang
, X.-C.
Yang
, and X.
Wang
, “Leakage and sweet spots in triple-quantum-dot spin qubits: A molecular-orbital study
,” Phys. Rev. A
97
, 042326
(2018
).36.
A.
Sala
and J.
Danon
, “Exchange-only singlet-only spin qubit
,” Phys. Rev. B
95
, 241303
(2017
).37.
M.
Russ
, J. R.
Petta
, and G.
Burkard
, “Quadrupolar exchange-only spin qubit
,” Phys. Rev. Lett.
121
, 177701
(2018
).38.
A.
Sala
, J. H.
Qvist
, and J.
Danon
, “Highly tunable exchange-only singlet-only qubit in a GaAs triple quantum dot
,” Phys. Rev. Res.
2
, 012062
(2020
).39.
M.
Kjaergaard
, M. E.
Schwartz
, J.
Braumüller
, P.
Krantz
, J. I.-J.
Wang
, S.
Gustavsson
, and W. D.
Oliver
, “Superconducting qubits: Current state of play
,” Annu. Rev. Condens. Matter Phys.
11
, 369
–395
(2020
).40.
A.
Gyenis
, A. D.
Paolo
, J.
Koch
, A.
Blais
, A. A.
Houck
, and D. I.
Schuster
, “Moving beyond the transmon: Noise-protected superconducting quantum circuits
,” PRX Quantum
2
, 030101
(2021
).41.
U.
Vool
and M.
Devoret
, “Introduction to quantum electromagnetic circuits
,” Int. J. Circ. Theor. Appl.
45
, 897
(2017
).42.
P.
Brooks
, A.
Kitaev
, and J.
Preskill
, “Protected gates for superconducting qubits
,” Phys. Rev. A
87
, 052306
(2013
).43.
A. R.
Klots
and L. B.
Ioffe
, “Set of holonomic and protected gates on topological qubits for a realistic quantum computer
,” Phys. Rev. B
104
, 144502
(2021
).44.
A.
Kitaev
, “Fault-tolerant quantum computation by anyons
,” Ann. Phys.
303
, 2
–30
(2003
).45.
L. B.
Ioffe
, M. V.
Feigel'man
, A.
Ioselevich
, D.
Ivanov
, M.
Troyer
, and G.
Blatter
, “Topologically protected quantum bits using Josephson junction arrays
,” Nature
415
, 503
(2002
).46.
L. B.
Ioffe
and M. V.
Feigel'man
, “Possible realization of an ideal quantum computer in Josephson junction array
,” Phys. Rev. B
66
, 224503
(2002
).47.
B.
Douçot
and J.
Vidal
, “Pairing of Cooper pairs in a fully frustrated Josephson-junction chain
,” Phys. Rev. Lett.
88
, 227005
(2002
).48.
B.
Douçot
, M. V.
Feigel'man
, L. B.
Ioffe
, and A. S.
Ioselevich
, “Protected qubits and Chern-Simons theories in Josephson junction arrays
,” Phys. Rev. B
71
, 024505
(2005
).49.
S.
Gladchenko
, D.
Olaya
, E.
Dupont-Ferrier
, B.
Douçot
, L. B.
Ioffe
, and M. E.
Gershenson
, “Superconducting nanocircuits for topologically protected qubits
,” Nat. Phys.
5
, 48
(2009
).50.
B.
Douçot
and L. B.
Ioffe
, “Physical implementation of protected qubits
,” Rep. Prog. Phys.
75
, 072001
(2012
).51.
M. T.
Bell
, J.
Paramanandam
, L. B.
Ioffe
, and M. E.
Gershenson
, “Protected Josephson rhombus chains
,” Phys. Rev. Lett.
112
, 167001
(2014
).52.
W. C.
Smith
, A.
Kou
, X.
Xiao
, U.
Vool
, and M. H.
Devoret
, “Superconducting circuit protected by two-Cooper-pair tunneling
,” npj Quantum Inf.
6
, 8
(2020
).53.
K.
Kalashnikov
, W. T.
Hsieh
, W.
Zhang
, W.-S.
Lu
, P.
Kamenov
, A. D.
Paolo
, A.
Blais
, M. E.
Gershenson
, and M.
Bell
, “Bifluxon: Fluxon-parity-protected superconducting qubit
,” PRX Quantum
1
, 010307
(2020
).54.
N.
Ofek
, A.
Petrenko
, R.
Heeres
, P.
Reinhold
, Z.
Leghtas
, B.
Vlastakis
, Y.
Liu
, L.
Frunzio
, S. M.
Girvin
, L.
Jiang
, M.
Mirrahimi
, M. H.
Devoret
, and R. J.
Schoelkopf
, “Extending the lifetime of a quantum bit with error correction in superconducting circuits
,” Nature
536
, 441
(2016
).55.
M.
Mirrahimi
, Z.
Leghtas
, V. V.
Albert
, S.
Touzard
, R. J.
Schoelkopf
, L.
Jiang
, and M. H.
Devoret
, “Dynamically protected cat-qubits: A new paradigm for universal quantum computation
,” New J. Phys.
16
, 045014
(2014
).56.
S.
Puri
, S.
Boutin
, and A.
Blais
, “Engineering the quantum states of light in a Kerr-nonlinear resonator by two-photon driving
,” npj Quantum Inf.
3
, 18
(2017
).57.
P.
Campagne-Ibarcq
, A.
Eickbusch
, S.
Touzard
, E.
Zalys-Geller
, N. E.
Frattini
, V. V.
Sivak
, P.
Reinhold
, S.
Puri
, S.
Shankar
, R. J.
Schoelkopf
, L.
Frunzio
, M.
Mirrahimi
, and M. H.
Devoret
, “Quantum error correction of a qubit encoded in grid states of an oscillator
,” Nature
584
, 368
(2020
).58.
A.
Grimm
, N. E.
Frattini
, S.
Puri
, S. O.
Mundhada
, S.
Touzard
, M.
Mirrahimi
, S. M.
Girvin
, S.
Shankar
, and M. H.
Devoret
, “Stabilization and operation of a Kerr-cat qubit
,” Nature
584
, 205
(2020
).59.
T. W.
Larsen
, M. E.
Gershenson
, L.
Casparis
, A.
Kringhøj
, N. J.
Pearson
, R. P. G.
McNeil
, F.
Kuemmeth
, P.
Krogstrup
, K. D.
Petersson
, and C. M.
Marcus
, “Parity-protected superconductor-semiconductor qubit
,” Phys. Rev. Lett.
125
, 056801
(2020
).60.
61.
J. M.
Dempster
, B.
Fu
, D. G.
Ferguson
, D. I.
Schuster
, and J.
Koch
, “Understanding degenerate ground states of a protected quantum circuit in the presence of disorder
,” Phys. Rev. B
90
, 094518
(2014
).62.
P.
Groszkowski
, A. D.
Paolo
, A. L.
Grimsmo
, A.
Blais
, D. I.
Schuster
, A. A.
Houck
, and J.
Koch
, “Coherence properties of the 0–π qubit
,” New J. Phys.
20
, 043053
(2018
).63.
A. D.
Paolo
, A. L.
Grimsmo
, P.
Groszkowski
, J.
Koch
, and A.
Blais
, “Control and coherence time enhancement of the 0–π qubit
,” New J. Phys.
21
, 043002
(2019
).64.
A.
Gyenis
, P. S.
Mundada
, A. D.
Paolo
, T. M.
Hazard
, X.
You
, D. I.
Schuster
, J.
Koch
, A.
Blais
, and A. A.
Houck
, “Experimental realization of a protected superconducting circuit derived from the 0–π qubit
,” PRX Quantum
2
, 010339
(2021
).65.
N.
Didier
, “Flux control of superconducting qubits at dynamical sweet spots
,” arXiv:1912.09416 [quant-ph] (2019
).66.
M.
Sato
, Y.
Takahashi
, and S.
Fujimoto
, “Non-abelian topological order in s-wave superfluids of ultracold fermionic atoms
,” Phys. Rev. Lett.
103
, 020401
(2009
).67.
J. D.
Sau
, R. M.
Lutchyn
, S.
Tewari
, and S. D.
Sarma
, “Generic new platform for topological quantum computation using semiconductor heterostructures
,” Phys. Rev. Lett.
104
, 040502
(2010
).68.
J.
Alicea
, “Majorana fermions in a tunable semiconductor device
,” Phys. Rev. B
81
, 125318
(2010
).69.
Y.
Oreg
, G.
Refael
, and F.
von Oppen
, “Helical liquids and Majorana bound states in quantum wires
,” Phys. Rev. Lett.
105
, 177002
(2010
).70.
R. M.
Lutchyn
, J. D.
Sau
, and S. D.
Sarma
, “Majorana fermions and a topological phase transition in semiconductor-superconductor heterostructures
,” Phys. Rev. Lett.
105
, 077001
(2010
).71.
M.
Hell
, M.
Leijnse
, and K.
Flensberg
, “Two-dimensional platform for networks of Majorana bound states
,” Phys. Rev. Lett.
118
, 107701
(2017
).72.
R. M.
Lutchyn
, E. P.
Bakkers
, L. P.
Kouwenhoven
, P.
Krogstrup
, C. M.
Marcus
, and Y.
Oreg
, “Majorana zero modes in superconductor–semiconductor heterostructures
,” Nat. Rev. Mater.
3
, 52
(2018
).73.
S.
Takei
, B. M.
Fregoso
, H.-Y.
Hui
, A. M.
Lobos
, and S. D.
Sarma
, “Soft superconducting gap in semiconductor Majorana nanowires
,” Phys. Rev. Lett.
110
, 186803
(2013
).74.
A.
Akhmerov
, J.
Dahlhaus
, F.
Hassler
, M.
Wimmer
, and C.
Beenakker
, “Quantized conductance at the Majorana phase transition in a disordered superconducting wire
,” Phys. Rev. Lett.
106
, 057001
(2011
).75.
P.
Krogstrup
, N. L. B.
Ziino
, W.
Chang
, S. M.
Albrecht
, M. H.
Madsen
, E.
Johnson
, J.
Nygård
, C. M.
Marcus
, and T. S.
Jespersen
, “Epitaxy of semiconductor–superconductor nanowires
,” Nat. Mater.
14
, 400
–406
(2015
).76.
A. Y.
Kitaev
, “Unpaired Majorana fermions in quantum wires
,” Phys.-Usp.
44
, 131
(2001
).77.
C.
Moore
, T. D.
Stanescu
, and S.
Tewari
, “Two-terminal charge tunneling: Disentangling Majorana zero modes from partially separated Andreev bound states in semiconductor-superconductor heterostructures
,” Phys. Rev. B
97
, 165302
(2018
).© 2021 Author(s). Published under an exclusive license by AIP Publishing.
2021
Author(s)
You do not currently have access to this content.