Electret-based microelectromechanical system (MEMS) vibratory energy harvesting is a key technology for converting the mechanical energy of environmental vibrations into electricity. Unfortunately, conventional electret charging methods generally rely on high-voltage and high-temperature processes that present limitations to MEMS design and production. Here, we show a MEMS post-processed self-assembled electret (SAE) that enables the integration of electrets with MEMS vibratory devices via evaporation as a post-MEMS process. Owing to the spontaneous orientation of polar molecules, the surface potential of the SAE can build up at room temperature in a microscopic region without charging processes, which enhances the design and fabrication flexibility of electret-based MEMS energy harvesters. We develop a MEMS vibratory device followed by post-processing the SAE and confirm induced electrical currents caused by the electrical field of the SAE at the vibrational input. This SAE-based MEMS technology is a promising design guideline for highly integrated single-chip MEMS vibratory energy harvesters.

1.
S. P.
Beeby
,
M. J.
Tudor
, and
N. M.
White
, “
Energy harvesting vibration sources for microsystems applications
,”
Meas. Sci. Technol.
17
,
R175
(
2006
).
2.
C.
Wei
and
X.
Jing
, “
A comprehensive review on vibration energy harvesting: Modelling and realization
,”
Renewable Sustainable Energy Rev.
74
,
1
18
(
2017
).
3.
H.
Toshiyoshi
,
S.
Ju
,
H.
Honma
 et al, “
MEMS vibrational energy harvesters
,”
Sci. Technol. Adv. Mater.
20
,
124
143
(
2019
).
4.
H.
Akinaga
, “
Recent advances and future prospects in energy harvesting technologies
,”
Jpn. J. Appl. Phys.
59
,
110201
(
2020
).
5.
R.
Torah
,
P.
Glynne-Jones
,
M.
Tudor
 et al, “
Self-powered autonomous wireless sensor node using vibration energy harvesting
,”
Meas. Sci. Technol.
19
,
125202
(
2008
).
6.
H.
Sun
,
M.
Yin
,
W.
Wei
 et al, “
MEMS based energy harvesting for the internet of things: A survey
,”
Microsyst. Technol.
24
,
2853
2869
(
2018
).
7.
B.
Dunn
,
H.
Kamath
, and
J.-M.
Tarascon
, “
Electrical energy storage for the grid: A battery choices
,”
Science
334
,
928
935
(
2011
).
8.
B.
Huskinson
,
M. P.
Marshak
,
C.
Suh
 et al, “
A metal-free organic-inorganic aqueous flow battery
,”
Nature
505
,
195
(
2014
).
9.
S.
Roundy
,
K. P.
Wright
, and
J.
Rabaey
, “
A study of low level vibrations as a power source for wireless sensor nodes
,”
Comput. Commun.
26
,
1131
1144
(
2003
).
10.
P. D.
Mitcheson
,
E. M.
Yeatman
,
G. K.
Rao
 et al, “
Energy harvesting from human and machine motion for wireless electronic devices
,”
Proc. IEEE
96
,
1457
1486
(
2008
).
11.
H.
Honma
,
H.
Mitsuya
,
G.
Hashiguchi
 et al, “
Improvement of energy conversion effectiveness and maximum output power of electrostatic induction-type MEMS energy harvesters by using symmetric comb-electrode structures
,”
J. Micromech. Microeng.
28
,
064005
(
2018
).
12.
P.
Basset
,
D.
Galayko
,
F.
Cottone
 et al, “
Electrostatic vibration energy harvester with combined effect of electrical nonlinearities and mechanical impact
,”
J. Micromech. Microeng.
24
,
035001
(
2014
).
13.
K.
Tao
,
S. W.
Lye
,
J.
Miao
 et al, “
Out-of-plane electret-based MEMS energy harvester with the combined nonlinear effect from electrostatic force and a mechanical elastic stopper
,”
J. Micromech. Microeng.
25
,
104014
(
2015
).
14.
H.
Koga
,
H.
Mitsuya
,
H.
Honma
 et al, “
Development of a cantilever-type electrostatic energy harvester and its charging characteristics on a highway viaduct
,”
Micromachines
8
,
293
(
2017
).
15.
K.
Murotani
and
Y.
Suzuki
, “
MEMS electret energy harvester with embedded bistable electrostatic spring for broadband response
,”
J. Micromech. Microeng.
28
,
104001
(
2018
).
16.
Y.
Zhang
,
T.
Wang
,
A.
Luo
 et al, “
Micro electrostatic energy harvester with both broad bandwidth and high normalized power density
,”
Appl. Energy
212
,
362
371
(
2018
).
17.
Z. L.
Wang
and
J.
Song
, “
Piezoelectric nanogenerators based on zinc oxide nanowire arrays
,”
Science
312
,
242
246
(
2006
).
18.
E. E.
Aktakka
and
K.
Najafi
, “
A micro inertial energy harvesting platform with self-supplied power management circuit for autonomous wireless sensor nodes
,”
IEEE J. Solid-State Circuits
49
,
2017
2029
(
2014
).
19.
H.-C.
Song
,
P.
Kumar
,
D.
Maurya
 et al, “
Ultra-low resonant piezoelectric MEMS energy harvester with high power density
,”
J. Microelectromech. Syst.
26
,
1226
1234
(
2017
).
20.
L.
Lu
,
B.
Yang
,
Y.
Zhai
 et al, “
Electrospinning core-sheath piezoelectric microfibers for self-powered stichable sensor
,”
Nano Energy
76
,
104966
(
2020
).
21.
L.
Lu
,
W.
Ding
,
J.
Liu
 et al, “
Flexible PVDF based piezoelectric nanogenerators
,”
Nano Energy
78
,
105251
(
2020
).
22.
J. C.
Park
,
D. H.
Bang
, and
J. Y.
Park
, “
Micro-fabricated electromagnetic power generator to scavenge low ambient vibration
,”
IEEE Trans. Magn.
46
,
1937
1942
(
2010
).
23.
A. R. M.
Foisal
,
C.
Hong
, and
G.-S.
Chung
, “
Multi-frequency electromagnetic energy harvester using a magnetic spring cantilever
,”
Sens. Actuators A
172
,
475
482
(
2011
).
24.
T.
Asai
,
Y.
Araki
, and
K.
Ikago
, “
Energy harvesting potential of tuned inertial mass electromagnetic transducers
,”
Mech. Syst. Signal Process.
84
,
659
672
(
2017
).
25.
Q.
Liu
,
M. F.
Daqaq
, and
G.
Li
, “
Performance analysis of a ferrofluid-based electromagnetic energy harvester
,”
IEEE Trans. Magn.
54
,
4600314
(
2018
).
26.
Y.
Yang
,
U.
Radhakrishna
,
J. F.
Hunter
 et al, “
An electromagnetic translational vibration energy harvester fabricated in MP35N alloy
,”
J. Microelectromech. Syst.
29
,
1518
1522
(
2020
).
27.
H.
Okamoto
,
T.
Suzuki
,
K.
Mori
 et al, “
The advantages and potential of electret-based vibration-driven micro energy harvesters
,”
Int. J. Energy Res.
33
,
1180
1190
(
2009
).
28.
G. M.
Sessler
,
Electrets
, 3rd ed. (
Laplacian Press
,
1998
).
29.
P.
Gunther
, “
Mechanism of charge storage in electron-beam or corona-charged silicon-dioxide electrets
,”
IEEE Trans. Electr. Insul.
26
,
42
48
(
1991
).
30.
K.
Hagiwara
,
M.
Goto
,
Y.
Iguchi
 et al, “
Electret charging method based on soft X-ray photoionization for MEMS transducers
,”
Trans. IEEE Dielectr. Electr. Insul.
19
,
1291
1298
(
2012
).
31.
T.
Minami
,
T.
Utsubo
,
T.
Yamatani
 et al, “
SiO2 electret thin films prepared by various deposition methods
,”
Thin Solid Films
426
,
47
52
(
2003
).
32.
K.
Kashiwagi
,
K.
Okano
,
T.
Miyajima
 et al, “
Nano-cluster-enhanced high-performance perfluoro-polymer electrets for energy harvesting
,”
J. Micromech. Microeng.
21
,
125016
(
2011
).
33.
G.
Hashiguchi
,
D.
Nakasone
,
T.
Sugiyama
 et al, “
Charging mechanism of electret film made of potassium-ion-doped SiO2
,”
AIP Adv.
6
,
035004
(
2016
).
34.
R.
Arora
,
E. X.
Zhang
,
S.
Seth
 et al, “
Trade-offs between RF performance and total-dose tolerance in 45-nm RF-CMOS
,”
IEEE Trans. Nucl. Sci.
58
,
2830
2837
(
2011
).
35.
Y.-C.
Liu
,
M.-H.
Tsai
,
T.-L.
Tang
 et al, “
Post-CMOS selective electroplating technique for the improvement of CMOS-MEMS accelerometers
,”
J. Micromech. Microeng.
21
,
105005
(
2011
).
36.
S.-S.
Li
,
M.-H.
Li
, and
C. Y.
Chen
, “
CMOS-MEMS resonators and oscillators: A review
,”
Sens. Mater.
30
,
733
756
(
2018
).
37.
Y.
Tanaka
,
N.
Matsuura
, and
H.
Ishii
, “
Self-assembled electret for vibration-based power generator
,”
Sci. Rep.
10
,
6648
(
2020
).
38.
Y.
Noguchi
,
W.
Brütting
, and
H.
Ishii
, “
Spontaneous orientation polarization in organic light-emitting diodes
,”
Jpn. J. Appl. Phys.
58
,
SF0801
(
2019
).
39.
Y.
Noguchi
,
Y.
Miyazaki
,
Y.
Tanaka
 et al, “
Charge accumulation at organic semiconductor interfaces due to a permanent dipole moment and its orientational order in bilayer devices
,”
J. Appl. Phys.
111
,
114508
(
2012
).
40.
E.
Ito
,
Y.
Washizu
,
N.
Hayashi
 et al, “
Spontaneous buildup of giant surface potential by vacuum deposition of Alq3 and its removal by visible light irradiation
,”
J. Appl. Phys.
92
,
7306
(
2002
).
41.
Y.
Tanaka
,
Y.
Noguchi
,
K.
Oda
 et al, “
Evaluation of internal potential distribution and carrier extraction properties of organic solar cells through Kelvin probe and time-of-flight measurements
,”
J. Appl. Phys.
116
,
114503
(
2014
).
42.
K.
Sugi
,
H.
Ishii
,
Y.
Kimura
 et al, “
Characterization of light-erasable giant surface potential built up in evaporated Alq3 thin films
,”
Thin Solid Films
464–465
,
412
(
2004
).
43.
D.
Yamane
,
T.
Konishi
,
T.
Matsushima
 et al, “
Design of sub-1g microelectromechanical systems accelerometers
,”
Appl. Phys. Lett.
104
,
074102
(
2014
).
44.
T.
Konishi
,
D.
Yamane
,
T.
Matsushima
 et al, “
Novel sensor structure and its evaluation for integrated complementary metal oxide semiconductor microelectromechanical systems accelerometer
,”
Jpn. J. Appl. Phys.
52
,
06GL04
(
2013
).
45.
D.
Yamane
,
T.
Konishi
,
T.
Safu
 et al, “
A MEMS accelerometer for sub-mG sensing
,”
Sens. Mater.
31
,
2883
2894
(
2019
).
46.
D.
Yamane
,
T.
Konishi
,
T.
Safu
 et al, “
Long-term vibration characteristics of MEMS inertial sensors by multi-layer metal technology
,”
Proc. Transducers
2017
,
2187
2190
.
47.
K.
Machida
,
S.
Shigematsu
,
H.
Morimura
 et al, “
A novel semiconductor capacitive sensor for a single-chip fingerprint sensor/identifier LSI
,”
IEEE Trans. Electron.
48
,
2273
2278
(
2001
).
48.
T.
Konishi
,
K.
Machida
,
S.
Maruyama
 et al, “
A single-platform simulation and design technique for CMOS-MEMS based on a circuit simulator with hardware description language
,”
J. Microelectromech. Syst.
22
,
755
767
(
2013
).
49.
Z.
Yang
,
L.
Tang
,
L.
Yu
 et al, “
Modelling and analysis of an out-of-plane electret-based vibration energy harvester with AC and DC circuits
,”
Mech. Syst. Signal Process.
140
,
106660
(
2020
).
50.
Y.
Suzuki
,
D.
Miki
,
M.
Edamoto
 et al, “
A MEMS electret generator with electrostatic levitation for vibration-driven energy-harvesting applications
,”
J. Micromech. Microeng.
20
,
104002
(
2010
).
51.
P. D.
Mitcheson
,
T. C.
Green
,
E. M.
Yeatman
 et al, “
Architectures for vibration-driven micropower generators
,”
J. Microelectromech. Syst.
13
,
429
440
(
2004
).
52.
S.
Kim
,
K.
Suzuki
, and
Y.
Suzuki
, “
Development of a high-performance amorphous fluorinated polymer electret based on quantum chemical analysis
,”
J. Appl. Phys.: Conf. Ser.
1407
,
012031
(
2019
).
53.
L.
Jäger
,
T. D.
Schmidt
, and
W.
Brütting
, “
Manipulation and control of the interfacial polarization in organic light-emitting diodes by dipolar doping
,”
AIP Adv.
6
,
095220
(
2016
).
54.
H. D. C. N.
Gunawardana
,
K.
Osada
,
K. R.
Koswattage
 et al, “
Enhancement of the molecular orientation of TPBi in coevaporated films of UGH-2 host molecules
,”
Surf. Interface Anal.
53
,
460
465
(
2021
).
55.
J.
Nakano
,
K.
Komori
,
Y.
Hattori
 et al, “
MEMS rotational electret energy harvester for human motion
,”
J. Phys. Conf. Ser.
660
,
012052
(
2015
).
56.
M.
Lemkin
and
B. E.
Boser
, “
A three-axis micromachined accelerometer with a CMOS position-sense interface and digital offset-trim electronics
,”
IEEE J. Solid-State Circuits
34
,
456
468
(
1999
).
57.
CMOS-MEMS: Advanced Micro and Nanosystems
, edited by
H.
Baltes
,
O.
Brand
,
G. K.
Fedder
 et al (
Wiley-VCH
,
2005
).

Supplementary Material

You do not currently have access to this content.