Nonvolatile resistive switching based memristor and memtransistor devices have emerged as a leading platform in neuromorphic computing. In this work, we have fabricated a multifunctional synaptic transistor (ST) using a conjugated polymer P3HT channel and a superionic rubidium silver iodide (RbAg4I5) thin film coated over a polyethylene oxide (PEO) layer as the gate dielectric. Large hysteresis in the transfer curve represents the memristive behavior with at least 105 current On/Off ratio. Enormously large specific capacitance induced by the electrical double layers at the interfaces of PEO/RbAg4I5 dielectric induces polaron (P3HT+) generation in the channel through bound states formation by the electrons with Ag+ ions and consequent movement of iodine (I) counter ions toward the P3HT channel under a negative gate bias stress. This is strongly supported by the blue shift of the Raman peak from 1444.2 to 1447.9 cm−1 and the appearance of a new peak at 1464.6 cm−1. Interestingly, the proposed ST device exhibits various synaptic actions, which include an excitatory postsynaptic current, paired-pulse facilitation, and short-term potentiation to long-term potentiation after repeated rehearsal on top of standard nonvolatile data storage capability. Our ST also depicts an enhanced retention to 103 s and more than 103 discrete On- and Off-states during potentiation and depression function modulation, respectively, just by consuming a very low energy of about 2.0 pJ per synaptic event. These results are very significant to make this organic synaptic transistor as a potential candidate in terms of the desired metrics for neuromorphic computation at low cost and improved accuracy in the future.

1.
D. B.
Strukov
,
G. S.
Snider
,
D. R.
Stewart
, and
R. S.
Williams
,
Nature
453
(
7191
),
80
83
(
2008
).
2.
Y.
van de Burgt
,
A.
Melianas
,
S. T.
Keene
,
G.
Malliaras
, and
A.
Salleo
,
Nat. Electron.
1
(
7
),
386
397
(
2018
).
3.
J. D.
Zhu
,
T.
Zhang
,
Y. C.
Yang
, and
R.
Huang
,
Appl. Phys. Rev.
7
(
1
),
011312
(
2020
).
4.
L. T.
Manamel
,
S. C.
Madam
,
S.
Sagar
, and
B. C.
Das
,
Nanotechnology
32
(
35
),
35LT02
(
2021
).
5.
D.
Kuzum
,
S. M.
Yu
, and
H. S. P.
Wong
,
Nanotechnology
24
(
38
),
382001
(
2013
).
6.
J.
Rivnay
,
S.
Inal
,
A.
Salleo
,
R. M.
Owens
,
M.
Berggren
, and
G. G.
Malliaras
,
Nat. Rev. Mater.
3
(
2
),
17086
(
2018
).
7.
N.
Krishnan K
,
A.
Sreedharan
,
S.
Sagar
,
L.
Thomas Manamel
,
A.
Mukherjee
, and
B. C.
Das
,
Appl. Surf. Sci.
568
,
150818
(
2021
).
8.
M. J.
Panzer
,
C. R.
Newman
, and
C. D.
Frisbie
,
Appl. Phys. Lett.
86
(
10
),
103503
(
2005
).
9.
N.
Mohammadian
,
S.
Faraji
,
S.
Sagar
,
B. C.
Das
,
M. L.
Turner
, and
L. A.
Majewski
,
Materials
12
(
16
),
2563
(
2019
).
10.
S.
Goswami
,
S.
Goswami
, and
T.
Venkatesan
,
Appl. Phys. Rev.
7
(
2
),
021303
(
2020
).
11.
B. B.
Tian
,
L.
Liu
,
M. G.
Yan
,
J. L.
Wang
,
Q. B.
Zhao
,
N.
Zhong
,
P. H.
Xiang
,
L.
Sun
,
H.
Peng
,
H.
Shen
,
T.
Lin
,
B.
Dkhi
,
X. J.
Meng
,
J. H.
Chu
,
X. D.
Tang
, and
C. G.
Duan
,
Adv. Electron. Mater.
5
(
1
),
1800600
(
2019
).
12.
X. B.
Yan
,
X. Y.
Li
,
Z. Y.
Zhou
,
J. H.
Zhao
,
H.
Wang
,
J. J.
Wang
,
L.
Zhang
,
D. L.
Ren
,
X.
Zhang
,
J. S.
Chen
,
C.
Lu
,
P.
Zhou
, and
Q.
Liu
,
ACS Appl. Mater. Interfaces
11
(
20
),
18654
18661
(
2019
).
13.
M.
Madadi Asl
and
S.
Ramezani Akbarabadi
,
PLoS One
16
(
9
),
e0257228
(
2021
).
14.
B. C.
Das
,
R. G.
Pillai
,
Y. L.
Wu
, and
R. L.
McCreery
,
ACS Appl. Mater Interfaces
5
(
21
),
11052
11058
(
2013
).
15.
T.
Chang
,
S. H.
Jo
, and
W.
Lu
,
ACS Nano
5
(
9
),
7669
7676
(
2011
).
16.
J.
Lenz
,
F.
del Giudice
,
F. R.
Geisenhof
,
F.
Winterer
, and
R. T.
Weitz
,
Nat. Nanotechnol.
14
(
6
),
579
585
(
2019
).
17.
P.
Acharyya
,
T.
Ghosh
,
S.
Matteppanavar
,
R. K.
Biswas
,
P.
Yanda
,
S. R.
Varanasi
,
D.
Sanyal
,
A.
Sundaresan
,
S. K.
Pati
, and
K.
Biswas
,
J. Phys. Chem. C
124
(
18
),
9802
9809
(
2020
).
18.
Q. X.
Lai
,
Z. Y.
Li
,
L.
Zhang
,
X. M.
Li
,
W. F.
Stickle
,
Z. H.
Zhu
,
Z.
Gu
,
T. I.
Kamins
,
R. S.
Williams
, and
Y.
Chen
,
Nano Lett
8
(
3
),
876
880
(
2008
).
19.
20.
J.
Yin
,
Y.
Liu
,
J.-L.
Zhu
,
Z.
Dong
,
W.
Ma
,
W.
Zhang
, and
J.-L.
Sun
,
Appl. Phys. Lett.
110
(
21
),
213106
(
2017
).
21.
S.
Sagar
,
A.
Dey
, and
B. C.
Das
,
ACS Appl. Electron. Mater.
1
(
11
),
2314
2324
(
2019
).
22.
J. H.
Kennedy
,
F.
Chen
, and
J.
Hunter
,
J. Electrochem. Soc.
120
(
3
),
454
(
1973
).
23.
K.
Funke
,
R. D.
Banhatti
,
D.
Wilmer
,
R.
Dinnebier
,
A.
Fitch
, and
M.
Jansen
,
J. Phys. Chem. A
110
(
9
),
3010
3016
(
2006
).
24.
R. C.
Atkinson
and
R.
Shiffrin
,
Mathematical Models for Memory and Learning
(
Stanford University
,
1965
).
25.
A.
Varzi
,
R.
Raccichini
,
S.
Passerini
, and
B.
Scrosati
,
J. Mater. Chem. A
4
(
44
),
17251
17259
(
2016
).
26.
R.
Kumar
,
R. G.
Pillai
,
N.
Pekas
,
Y. L.
Wu
, and
R. L.
McCreery
,
J. Am. Chem. Soc.
134
(
36
),
14869
14876
(
2012
).
27.
W. K.
Wang
,
C. Q.
Chen
,
C.
Tollan
,
F.
Yang
,
Y.
Qin
, and
M.
Knez
,
J. Mater. Chem. C
5
(
10
),
2686
2694
(
2017
).
28.
B.
Sainbileg
,
Y. B.
Lan
,
J. K.
Wang
, and
M.
Hayashi
,
J. Phys. Chem. C
122
(
8
),
4224
4231
(
2018
).
29.
T.
Miyazawa
,
K.
Fukushima
, and
Y.
Ideguchi
,
J. Chem. Phys.
37
(
12
),
2764
2776
(
1962
).
30.
C.
Wan
,
P.
Cai
,
M.
Wang
,
Y.
Qian
,
W.
Huang
, and
X.
Chen
,
Adv. Mater.
32
(
15
),
1902434
(
2020
).
31.
R. S.
Zucker
and
W. G.
Regehr
,
Annu. Rev. Physiol.
64
,
355
405
(
2002
).
32.
M. J.
Panzer
and
C. D.
Frisbie
,
Adv. Funct. Mater.
16
(
8
),
1051
1056
(
2006
).
33.
S. G.
Kim
,
J. S.
Han
,
H.
Kim
,
S. Y.
Kim
, and
H. W.
Jang
,
Adv. Mater. Technol.
3
(
12
),
1800457
(
2018
).
34.
D. O.
Hebb
,
The Organization of Behavior: A Neuropsychological Theory
(
John Wiley and Sons, Inc
,
New York
,
1949
), Vol.
34
, p
336
337
.
35.
T.
Serrano-Gotarredona
,
T.
Masquelier
,
T.
Prodromakis
,
G.
Indiveri
, and
B.
Linares-Barranco
,
Front Neurosci-Switz
7
,
2
(
2013
).
36.
Y. P.
Zhong
,
Y.
Li
,
L.
Xu
, and
X. S.
Miao
,
Phys Status Solidi RRL
9
(
7
),
414
419
(
2015
).

Supplementary Material

You do not currently have access to this content.