Qubits made from superconducting materials are a mature platform for quantum information science application, such as quantum computing. However, material-based losses are now a limiting factor in reaching the coherence times needed for applications. In particular, knowledge of the atomistic structure and properties of the circuit materials is needed to identify, understand, and mitigate material-based decoherence channels. In this work, we characterize the atomic structure of the native oxide film formed on Nb resonators by comparing fluctuation electron microscopy experiments to density functional theory calculations, finding that an amorphous layer is consistent with an Nb2O5 stoichiometry. Comparing x-ray absorption measurements at the Oxygen K edge with first-principles calculations, we find evidence of d-type magnetic impurities in our sample, known to cause impedance in proximal superconductors. This work identifies the structural and chemical composition of the oxide layer grown on Nb superconductors and shows that soft x-ray absorption can fingerprint magnetic impurities in these superconducting systems.

1.
M. H.
Devoret
and
R. J.
Schoelkopf
, “
Superconducting circuits for quantum information: An outlook
,”
Science
339
,
1169
1174
(
2013
).
2.
M.
Kjaergaard
,
M. E.
Schwartz
,
J.
Braumüller
,
P.
Krantz
,
J. I.-J.
Wang
,
S.
Gustavsson
, and
W. D.
Oliver
, “
Superconducting qubits: Current state of play
,”
Annu. Rev. Condens. Matter Phys.
11
,
369
395
(
2020
).
3.
R.
McDermott
, “
Materials origins of decoherence in superconducting qubits
,”
IEEE Trans. Appl. Supercond.
19
,
2
13
(
2009
).
4.
W. D.
Oliver
and
P. B.
Welander
, “
Materials in superconducting quantum bits
,”
MRS Bull.
38
,
816
(
2013
).
5.
N. P.
de Leon
,
K. M.
Itoh
,
D.
Kim
,
K. K.
Mehta
,
T. E.
Northup
,
H.
Paik
,
B. S.
Palmer
,
N.
Samarth
,
S.
Sangtawesin
, and
D. W.
Steuerman
, “
Materials challenges and opportunities for quantum computing hardware
,”
Science
372
,
eabb2823
(
2021
).
6.
C.
Müller
,
J. H.
Cole
, and
J.
Lisenfeld
, “
Towards understanding two-level-systems in amorphous solids: Insights from quantum circuits
,”
Rep. Prog. Phys.
82
,
124501
124534
(
2019
).
7.
W. A.
Phillips
, “
Two-level states in glasses
,”
Rep. Prog. Phys.
50
,
1657
1708
(
1987
).
8.
J.
Burnett
,
L.
Faoro
, and
T.
Lindström
, “
Analysis of high quality superconducting resonators: Consequences for TLS properties in amorphous oxides
,”
Supercond. Sci. Technol.
29
,
044008
(
2016
).
9.
C. D.
Wilen
,
S.
Abdullah
,
N. A.
Kurinsky
,
C.
Stanford
,
L.
Cardani
,
G.
D'Imperio
,
C.
Tomei
,
L.
Faoro
,
L. B.
Ioffe
,
C. H.
Liu
,
A.
Opremcak
,
B. G.
Christensen
,
J. L.
DuBois
, and
R.
McDermott
, “
Correlated charge noise and relaxation errors in superconducting qubits
,” arXiv:2012.06029 [quant-ph] (
2020
).
10.
L.
Cardani
,
F.
Valenti
,
N.
Casali
,
G.
Catelani
,
T.
Charpentier
,
M.
Clemenza
,
I.
Colantoni
,
A.
Cruciani
,
L.
Gironi
,
L.
Grünhaupt
,
D.
Gusenkova
,
F.
Henriques
,
M.
Lagoin
,
M.
Martinez
,
G.
Pettinari
,
C.
Rusconi
,
O.
Sander
,
A. V.
Ustinov
,
M.
Weber
,
W.
Wernsdorfer
,
M.
Vignati
,
S.
Pirro
, and
I. M.
Pop
, “
Reducing the impact of radioactivity on quantum circuits in a deep-underground facility
,” arXiv:2005.02286 [cond-mat.supr-con] (
2020
).
11.
M.
Kharitonov
,
T.
Proslier
,
A.
Glatz
, and
M. J.
Pellin
, “
Surface impedance of superconductors with magnetic impurities
,”
Phys. Rev. B
86
,
024514
(
2012
).
12.
T.
Proslier
,
M.
Kharitonov
,
M.
Pellin
, and
J.
Zasadzinski
, “
Evidence of surface paramagnetism in niobium and consequences for the superconducting cavity surface impedance
,”
IEEE Trans. Appl. Supercond.
21
,
2619
2622
(
2011
).
13.
E.
Sheridan
,
T. F.
Harrelson
,
E.
Sivonxay
,
K. A.
Persson
,
M. V. P.
Altoe
,
I.
Siddiqi
,
D. F.
Ogletree
,
D. I.
Santiago
, and
S. M.
Griffin
, “
Microscopic theory of magnetic disorder-induced decoherence in superconducting Nb films
,” arXiv preprint arXiv:2111.11684 (
2021
).
14.
A. P.
Vepsäläinen
,
A. H.
Karamlou
,
J. L.
Orrell
,
A. S.
Dogra
,
B.
Loer
,
F.
Vasconcelos
,
D. K.
Kim
,
A. J.
Melville
,
B. M.
Niedzielski
,
J. L.
Yoder
,
S.
Gustavsson
,
J. A.
Formaggio
,
B. A.
VanDevender
, and
W. D.
Oliver
, “
Impact of ionizing radiation on superconducting qubit coherence
,”
Nature
584
,
551
556
(
2020
).
15.
J. M.
Martinis
, “
Saving superconducting quantum processors from qubit decay and correlated errors generated by gamma and cosmic rays
,” arXiv:2012.06137 [quant-ph] (
2020
).
16.
A. P. M.
Place
,
L. V. H.
Rodgers
,
P.
Mundada
,
B. M.
Smitham
,
M.
Fitzpatrick
,
Z.
Leng
,
A.
Premkumar
,
J.
Bryon
,
A.
Vrajitoarea
,
S.
Sussman
,
G.
Cheng
,
T.
Madhavan
,
H. K.
Babla
,
X. H.
Le
,
Y.
Gang
,
B.
Jäck
,
A.
Gyenis
,
N.
Yao
,
R. J.
Cava
,
N. P.
de Leon
, and
A. A.
Houck
, “
New material platform for superconducting transmon qubits with coherence times exceeding 0.3 milliseconds
,”
Nat. Commun.
12
,
1779
(
2021
).
17.
S. B.
Kaplan
,
C.
Chi
,
D.
Langenberg
,
J.-J.
Chang
,
S.
Jafarey
, and
D.
Scalapino
, “
Quasiparticle and phonon lifetimes in superconductors
,”
Phys. Rev. B
14
,
4854
(
1976
).
18.
M.
Delheusy
,
A.
Stierle
,
N.
Kasper
,
R.
Kurta
,
A.
Vlad
,
H.
Dosch
,
C.
Antoine
,
A.
Resta
,
E.
Lundgren
, and
J.
Andersen
, “
X-ray investigation of subsurface interstitial oxygen at Nb/oxide interfaces
,”
Appl. Phys. Lett.
92
,
101911
(
2008
).
19.
M. V. P.
Altoé
,
A.
Banerjee
,
C.
Berk
,
A.
Hajr
,
A.
Schwartzberg
,
C.
Song
,
M. A.
Ghadeer
,
S.
Aloni
,
M. J.
Elowson
,
J. M.
Kreikebaum
,
E. K.
Wong
,
S.
Griffin
,
S.
Rao
,
A.
Weber-Bargioni
,
A. M.
Minor
,
D. I.
Santiago
,
S.
Cabrini
,
I.
Siddiqi
, and
D. F.
Ogletree
, “
Localization and reduction of superconducting quantum coherent circuit losses
,” arXiv:2012.07604 (
2020
).
20.
M.
Mergenthaler
,
S.
Paredes
,
P.
Müller
,
C.
Müller
,
S.
Filipp
,
M.
Sandberg
,
J.
Hertzberg
,
V. P.
Adiga
,
M.
Brink
, and
A.
Fuhrer
, “
Ultrahigh vacuum packaging and surface cleaning for quantum devices
,”
Rev. Sci. Instrum.
92
,
025121
(
2021
).
21.
J.
Verjauw
,
A.
Potočnik
,
M.
Mongillo
,
R.
Acharya
,
F.
Mohiyaddin
,
G.
Simion
,
A.
Pacco
,
T.
Ivanov
,
D.
Wan
,
A.
Vanleenhove
 et al., “
Investigation of microwave loss induced by oxide regrowth in high-Q niobium resonators
,”
Phys. Rev. Appl.
16
,
014018
(
2021
).
22.
A.
Romanenko
and
D. I.
Schuster
, “
Understanding quality factor degradation in superconducting niobium cavities at low microwave field amplitudes
,”
Phys. Rev. Lett.
119
,
264801
(
2017
).
23.
A.
Romanenko
,
R.
Pilipenko
,
S.
Zorzetti
,
D.
Frolov
,
M.
Awida
,
S.
Belomestnykh
,
S.
Posen
, and
A.
Grassellino
, “
Three-dimensional superconducting resonators at T < 20 mK with photon lifetimes up to {τ}=2 s
,”
Phys. Rev. Appl.
13
,
034032
(
2020
).
24.
B. W.
Heinrich
,
J. I.
Pascual
, and
K. J.
Franke
, “
Single magnetic adsorbates on s-wave superconductors
,”
Prog. Surf. Sci.
93
,
1
19
(
2018
).
25.
P.
Voyles
and
D.
Muller
, “
Fluctuation microscopy in the STEM
,”
Ultramicroscopy
93
,
147
159
(
2002
).
26.
G.
Kresse
and
J.
Hafner
, “
Ab initio molecular dynamics for liquid metals
,”
Phys. Rev. B
47
,
558
561
(
1993
).
27.
T. F.
Harrelson
,
E.
Sheridan
,
E.
Sivonxay
,
K. A.
Persson
, and
S. M.
Griffin
(
2021
). “Amorphous niobium oxide structures calculated from first principles using density functional theory and molecular dynamics,”
Zenodo
. .
28.
J.
Vinson
,
J. J.
Rehr
,
J. J.
Kas
, and
E. L.
Shirley
, “
Bethe-Salpeter equation calculations of core excitation spectra
,”
Phys. Rev. B
83
,
115106
(
2011
).
29.
P.
Giannozzi
,
O.
Andreussi
,
T.
Brumme
,
O.
Bunau
,
M. B.
Nardelli
,
M.
Calandra
,
R.
Car
,
C.
Cavazzoni
,
D.
Ceresoli
,
M.
Cococcioni
,
N.
Colonna
,
I.
Carnimeo
,
A. D.
Corso
,
S.
de Gironcoli
,
P.
Delugas
,
R. A.
DiStasio
,
A.
Ferretti
,
A.
Floris
,
G.
Fratesi
,
G.
Fugallo
,
R.
Gebauer
,
U.
Gerstmann
,
F.
Giustino
,
T.
Gorni
,
J.
Jia
,
M.
Kawamura
,
H.-Y.
Ko
,
A.
Kokalj
,
E.
Küçükbenli
,
M.
Lazzeri
,
M.
Marsili
,
N.
Marzari
,
F.
Mauri
,
N. L.
Nguyen
,
H.-V.
Nguyen
,
A. O.
de-la Roza
,
L.
Paulatto
,
S.
Poncé
,
D.
Rocca
,
R.
Sabatini
,
B.
Santra
,
M.
Schlipf
,
A. P.
Seitsonen
,
A.
Smogunov
,
I.
Timrov
,
T.
Thonhauser
,
P.
Umari
,
N.
Vast
,
X.
Wu
, and
S.
Baroni
, “
Advanced capabilities for materials modelling with quantum ESPRESSO
,”
J. Phys.: Condens. Matter
29
,
465901
(
2017
).
30.
M.
van Setten
,
M.
Giantomassi
,
E.
Bousquet
,
M.
Verstraete
,
D.
Hamann
,
X.
Gonze
, and
G.-M.
Rignanese
, “
The pseudodojo: Training and grading a 85 element optimized norm-conserving pseudopotential table
,”
Comput. Phys. Commun.
226
,
39
54
(
2018
).
31.
D. R.
Hamann
, “
Optimized norm-conserving vanderbilt pseudopotentials
,”
Phys. Rev. B
88
,
085117
(
2013
).
32.
P. M.
Voyles
and
J. R.
Abelson
, “
Medium-range order in amorphous silicon measured by fluctuation electron microscopy
,”
Sol. Energy Mater. Sol. Cells
78
,
85
113
(
2003
).
33.
T.
Daulton
,
K.
Bondi
, and
K.
Kenneth
, “
Nanobeam diffraction fluctuation electron microscopy technique for structural characterization of disordered materials—Application to Al88x Y7Fe5Tix metallic glasses
,”
Ultramicroscopy
110
,
1279
1289
(
2010
).
34.
E.
Kennedy
,
N.
Reynolds
,
L.
Rangel DaCosta
,
F.
Hellman
,
C.
Ophus
, and
M.
Scott
, “
Tilted fluctuation electron microscopy
,”
Appl. Phys. Lett.
117
,
091903
(
2020
).
35.
J.
Hwang
and
P.
Voyles
, “
Variable resolution fluctuation electron microscopy on cu-zr metallic glass using a wide range of coherent stem probe size
,”
Microsc. Microanal.
17
,
67
74
(
2011
).
36.
F.
Frati
,
M. O.
Hunault
, and
F. M.
de Groot
, “
Oxygen k-edge x-ray absorption spectra
,”
Chem. Rev.
120
,
4056
4110
(
2020
).
37.
L. K.
Herval
,
D.
Von Dreifus
,
A. C.
Rabelo
,
A. D.
Rodrigues
,
E. C.
Pereira
,
Y. G.
Gobato
,
A. J.
De Oliveira
, and
M. P.
De Godoy
, “
The role of defects on the structural and magnetic properties of Nb2O5
,”
J. Alloys Compd.
653
,
358
362
(
2015
).
38.
T. F.
Harrelson
,
J.
Vinson
,
E.
Sheridan
, and
S. M.
Griffin
(
2021
). “Calculated O K-edge XAS spectra of niobium oxide phases using Bethe-Salpeter equation,”
Zenodo
.

Supplementary Material

You do not currently have access to this content.