The acoustic nonreciprocal device has attracted the attention of some researchers because of the potential practical applications, for example, biomedical ultrasound applications, energy saving, and harvesting. We propose a low-frequency acoustic generation and nonreciprocal transmission device inspired by the previous studies and nature of the vibro-acoustic propagation. We utilize ultrasonic transducer to form acoustic radiation pressure on the water surface, which can vibrate water to produce low-frequency sound. Meanwhile, an ultrasonic metamaterial is designed based on our previous research. The metamaterial is placed under the metal sink to obstruct the 20 kHz ultrasonic waves and pass through the frequency sound waves. With that, the low-frequency acoustic sound is generated and pass through the metamaterial when the proposed device is in the forward configuration. When the device is in the backward configuration, the ultrasonic wave is obstructed by the metamaterials and metal sink bottom. Thus, no vibration is excited in the water, and therefore, no acoustic sound is generated. With the above-mentioned mechanism, the device can obtain the acoustic nonreciprocity in the very low-frequency range.

1.
B.
Li
,
L.
Wang
, and
G.
Casati
, “
Thermal diode: Rectification of heat flux
,”
Phys. Rev. Lett.
93
,
184301
(
2004
).
2.
Y.
Li
,
X. Y.
Shen
,
Z.
Wu
,
J.
Huang
 et al, “
Temperature-dependent transformation thermotics: From switchable thermal cloaks to macroscopic thermal diodes
,”
Phys. Rev. Lett.
115
,
195503
(
2015
).
3.
R.
Shrestha
,
Y.
Luan
,
X.
Luo
,
S.
Shin
 et al, “
Dual-mode solid-state thermal rectification
,”
Nat. Commun.
11
,
4346
(
2020
).
4.
W.
Kobayashi
,
Y.
Teraoka
, and
I.
Terasaki
, “
An oxide thermal rectifier
,”
Appl. Phys. Lett.
95
,
171905
(
2009
).
5.
E.
Verhagen
and
A.
Alù
, “
Optomechanical nonreciprocity
,”
Nat. Phys.
13
,
922
924
(
2017
).
6.
N. A.
Estep
,
D. L.
Sounas
,
J.
Soric
, and
A.
Alù
, “
Magnetic-free non-reciprocity and isolation based on parametrically modulated coupled-resonator loops
,”
Nat. Phys.
10
,
923
927
(
2014
).
7.
D. L.
Sounas
,
C.
Caloz
, and
A.
Alù
, “
Giant non-reciprocity at the subwavelength scale using angular momentum-biased metamaterials
,”
Nat. Commun.
4
,
2407
(
2013
).
8.
F.
Ruesink
,
M. A.
Miri
,
A.
Alù
, and
E.
Verhagen
, “
Nonreciprocity and magnetic free isolation based on optomechanical interactions
,”
Nat. Commun.
7
,
13662
(
2016
).
9.
L.
Fan
,
J.
Wang
,
L. T.
Varghese
 et al, “
An all-silicon passive optical diode
,”
Science
335
,
447
449
(
2012
).
10.
D. W.
Wang
,
H. T.
Zhou
,
M. J.
Guo
 et al, “
Optical diode made from a moving photonic crystal
,”
Phys. Rev. Lett.
110
,
093901
(
2013
).
11.
F.
Callewaert
,
S.
Butun
,
Z.
Li
, and
K.
Aydin
, “
Inverse design of an ultra-compact broadband optical diode based on asymmetric spatial mode conversion
,”
Sci. Rep.
6
,
32577
(
2016
).
12.
M.
Maldovan
, “
Sound and heat revolutions in phononics
,”
Nature
503
,
209
217
(
2013
).
13.
B.
Li
, “
Acoustics: Now you hear me, now you don't
,”
Nat. Mater.
9
,
962
963
(
2010
).
14.
H.
Nassar
,
B.
Yousefzadeh
,
R.
Fleury
 et al, “
Nonreciprocity in acoustic and elastic materials
,”
Nat. Rev. Mater.
5
,
667
(
2020
).
15.
R.
Riedlinger
, “
Acoustic diode
,” U.S. Patent No. 4618796 (
1989
).
16.
S. L.
Zhu
,
T.
Dreyer
,
M.
Liebler
,
R.
Riedlinger
 et al, “
Reduction of tissue injury in shock-wave lithotripsy by using an acoustic diode
,”
Ultrasound Med. Biol.
30
,
675
682
(
2004
).
17.
Z. J.
He
,
S. S.
Peng
,
Y. T.
Ye
 et al, “
Asymmetric acoustic gratings
,”
Appl. Phys. Lett.
98
,
083505
(
2011
).
18.
H. X.
Sun
,
S. Y.
Zhang
, and
X. J.
Shui
, “
A tunable acoustic diode made by a metal plate with periodical structure
,”
Appl. Phys. Lett.
100
,
103507
(
2012
).
19.
S.
Alagoz
, “
A sonic crystal diode implementation with a triangular scatter matrix
,”
Appl. Acoust.
76
,
402
406
(
2014
).
20.
X. F.
Li
,
X.
Ni
,
L.
Feng
 et al, “
Tunable unidirectional sound propagation through a sonic-crystal-based acoustic diode
,”
Phys. Rev. Lett.
106
,
084301
(
2011
).
21.
A.
Cicek
,
O. A.
Kaya
, and
B.
Ulug
, “
Refraction-type sonic crystal junction diode
,”
Appl. Phys. Lett.
100
,
111905
(
2012
).
22.
J. H.
Oh
,
H. W.
Kim
,
P. S.
Ma
 et al, “
Inverted bi-prism phononic crystals for one-sided elastic wave transmission applications
,”
Appl. Phys. Lett.
100
,
213503
(
2012
).
23.
X. F.
Zhu
,
X. Y.
Zou
,
B.
Liang
, and
J. C.
Cheng
, “
One-way mode transmission in one-dimensional phononic crystal plates
,”
J. Appl. Phys.
108
,
124909
(
2010
).
24.
Y.
Li
,
B.
Liang
,
Z. M.
Gu
,
X. Y.
Zou
 et al, “
Unidirectional acoustic transmission through a prism with near-zero refractive index
,”
Appl. Phys. Lett.
103
,
053505
(
2013
).
25.
Y. F.
Zhu
,
X. Y.
Zou
,
B.
Liang
, and
J. C.
Cheng
, “
Acoustic one-way open tunnel by using metasurface
,”
Appl. Phys. Lett.
107
,
113501
(
2015
).
26.
Y. F.
Zhu
,
X. Y.
Zou
,
B.
Liang
, and
J. C.
Cheng
, “
Broadband unidirectional transmission of sound in unblocked channel
,”
Appl. Phys. Lett.
106
,
173508
(
2015
).
27.
Z. L.
Xu
and
J.
Tong
, “
Multi-channel unidirectional transmission of phononic crystal heterojunctions
,”
Mod. Phys. Lett. B
32
,
1850050
(
2018
).
28.
J. J.
He
and
Z.
Kang
, “
Achieving directional propagation of elastic waves via topology optimization
,”
Ultrasonics
82
,
1
10
(
2018
).
29.
X.
Su
and
A. N.
Norris
, “
Focusing, refraction, and asymmetric transmission of elastic waves in solid metamaterials with aligned parallel gaps
,”
J. Acoust. Soc. Am.
139
,
3386
3394
(
2016
).
30.
A.
Colombi
,
D.
Colquitt
,
P.
Roux
,
S.
Guenneau
, and
R. V.
Craster
, “
A seismic metamaterial: The resonant metawedge
,”
Sci. Rep.
6
,
27717
(
2016
).
31.
C.
Shen
,
Y.
Xie
,
J.
Li
,
S. A.
Cummer
, and
Y.
Jing
, “
Asymmetric acoustic transmission through near-zero-index and gradient-index metasurfaces
,”
Appl. Phys. Lett.
108
,
223502
(
2016
).
32.
U.
Harbola
,
A.
Rosas
,
M.
Esposito
, and
K.
Lindenberg
, “
Pulse propagation in tapered granular chains: An analytic study
,”
Phys. Rev. E
80
,
031303
(
2009
).
33.
R.
Krishnan
,
S.
Shirota
,
Y.
Tanaka
, and
N.
Nishiguchi
, “
High-efficient acoustic wave rectifier
,”
Solid State Commun.
144
,
194
197
(
2007
).
34.
B.
Yuan
,
B.
Liang
,
J. C.
Tao
,
X. Y.
Zou
, and
J. C.
Cheng
, “
Broadband directional acoustic waveguide with high efficacy
,”
Appl. Phys. Lett.
101
,
043503
(
2012
).
35.
R.
Fleury
,
D. L.
Sounas
,
C. F.
Sieck
,
M. R.
Haberman
, and
A.
Alù
, “
Sound isolation and giant linear nonreciprocity in a compact acoustic circulator
,”
Science
343
,
516
519
(
2014
).
36.
R.
Fleury
,
A. B.
Khanikaev
, and
A.
Alù
, “
Floquet topological insulators for sound
,”
Nat. Commun.
7
,
11744
(
2016
).
37.
A. B.
Khanikaev
,
R.
Fleury
,
S. H.
Mousavi
, and
A.
Alù
, “
Topologically robust sound propagation in an angular-momentum-biased graphene-like resonator lattice
,”
Nat. Commun.
6
,
8260
(
2015
).
38.
Q.
Wang
,
Y.
Yang
,
X.
Ni
 et al, “
Acoustic asymmetric transmission based on time-dependent dynamical scattering
,”
Sci. Rep.
5
,
10880
(
2015
).
39.
B. I.
Popa
and
S. A.
Cummer
, “
Non-reciprocal and highly nonlinear active acoustic metamaterials
,”
Nat. Commun.
5
,
3398
(
2014
).
40.
A.
Merkel
,
M.
Willatzen
, and
J.
Christensen
, “
Dynamic nonreciprocity in loss compensated piezophononic media
,”
Phys. Rev. Appl.
9
,
034033
(
2018
).
41.
Z.-M.
Gu
,
J.
Hu
,
B.
Liang
,
X.-Y.
Zou
, and
J. C.
Cheng
, “
Broadband nonreciprocal transmission of sound with invariant frequency
,”
Sci. Rep.
6
,
19824
(
2016
).
42.
T.
Biwa
,
H.
Nakamura
, and
H.
Hyodo
, “
Experimental demonstration of a thermoacoustic diode
,”
Phys. Rev. Appl.
5
,
064012
(
2016
).
43.
V.
Peano
,
C.
Brendel
,
M.
Schmidt
, and
F.
Marquardt
, “
Topological phases of sound and light
,”
Phys. Rev. X
5
,
031011
(
2015
).
44.
L. M.
Nash
,
D.
Kleckner
,
V.
Vitelli
,
A. M.
Turner
, and
W. T.
Irvine
, “
Topological mechanics of gyroscopic metamaterials
,”
Proc. Natl. Acad. Sci. U. S. A.
112
,
14495
(
2015
).
45.
A.
Mojahed
,
J.
Bunyan
,
S.
Tawfick
, and
A. F.
Vakakis
, “
Tunable acoustic nonreciprocity in strongly nonlinear waveguides with asymmetry
,”
Phys. Rev. Appl.
12
,
034033
(
2019
).
46.
K. J.
Moore
,
J.
Bunyan
,
S.
Tawfick
 et al, “
Nonreciprocity in the dynamics of coupled oscillators with nonlinearity, asymmetry, and scale hierarchy
,”
Phys. Rev. E
97
,
012219
(
2018
).
47.
A.
Merkel
,
V.
Tournat
, and
V.
Gusev
, “
Directional asymmetry of the nonlinear wave phenomena in a three-dimensional granular phononic crystal under gravity
,”
Phys. Rev. E
90
,
023206
(
2014
).
48.
A.
Mojahed
,
O. V.
Gendelman
, and
A. F.
Vakakis
, “
Breather arrest, localization, and acoustic non-reciprocity in dissipative nonlinear lattices
,”
J. Acoust. Soc. Am.
146
,
826
842
(
2019
).
49.
B.
Liang
,
B.
Yuan
, and
J. C.
Cheng
, “
Acoustic diode: Rectification of acoustic energy flux in one-dimensional systems
,”
Phys. Rev. Lett.
103
,
104301
(
2009
).
50.
B.
Liang
,
X. S.
Guo
,
J.
Tu
,
D.
Zhang
, and
J. C.
Cheng
, “
An acoustic rectifier
,”
Nat. Mater.
9
,
989
992
(
2010
).
51.
N.
Boechler
,
G.
Theocharis
, and
C.
Daraio
, “
Bifurcation-based acoustic switching and rectification
,”
Nat. Mater.
10
,
665
668
(
2011
).
52.
J. R.
Raney
,
N.
Nadkarnic
,
C.
Daraiod
 et al, “
Stable propagation of mechanical signals in soft media using stored elastic energy
,”
Proc. Natl. Acad. Sci. U. S. A.
113
,
9722
9727
(
2016
).
53.
N.
Nadkarni
,
A. F.
Arrieta
,
C.
Chong
,
D. M.
Kochmann
, and
C.
Daraio
, “
Unidirectional transition waves in bistable lattices
,”
Phys. Rev. Lett.
116
,
244501
(
2016
).
54.
T.
Devaux
,
V.
Tournat
,
O.
Richoux
, and
V.
Pagneux
, “
Asymmetric acoustic propagation of wave packets via the self-demodulation effect
,”
Phys. Rev. Lett.
115
,
234301
(
2015
).
55.
T.
Devaux
,
A.
Cebrecos
,
O.
Richoux
,
V.
Pagneux
, and
V.
Tournat
, “
Acoustic radiation pressure for nonreciprocal transmission and switch effects
,”
Nat. Commun.
10
,
3292
(
2019
).
56.
M. F.
Hamilton
and
D. T.
Blackstock
,
Nonlinear Acoustics
(
Academic Press
,
San Diego
,
1998
).
57.
B.
Issenmann
,
R.
Wunenburger
,
S.
Manneville
, and
J. P.
Delville
, “
Bistability of a compliant cavity induced by acoustic radiation pressure
,”
Phys. Rev. Lett.
97
,
074502
(
2006
).
58.
Z.
Xu
,
L.
Qin
,
W.
Xu
 et al, “
Design approach of perforated labyrinth-based acoustic metasurface for selective acoustic levitation manipulation
,”
Sci. Rep.
11
,
7619
(
2021
).
59.
X.
Liu
,
X. Y.
Zhao
, and
C.
Xie
, “
Exact free vibration analysis for membrane assemblies with general classical boundary conditions
,”
J. Sound Vib.
485
,
115484
(
2020
).

Supplementary Material

You do not currently have access to this content.