The present study demonstrates the development of a dimensionless number to predict the build height in the additive manufacturing technique of directed energy deposition (DED). The build height can also be used to estimate the dendrite arm spacing and, thus, the cooling rate in the fabrication of samples. A baseline sample, 316L stainless steel, was used to fit the build height to the dimensionless number. A range of process parameters, including laser power, laser feed rate, powder flow rate, layer thickness, and hatch spacing, were varied. Based upon dendrite arm spacing, the estimated cooling rate varied between 102 and 104 K/s. Using the fitted relationship for the stainless steel, high-throughput (HT) processing of multi-principal element alloys (MPEAs) was performed. For this study, HT is the ability to fabricate a batch of 25 bulk samples (∼1 cm3) with different compositions within a 5-h period with ±10 at. % accuracy. A range of compositions using in situ alloying of elemental powders in the Fe–Ni–Cr–Mo system were made. The MPEAs' build height followed the same relationship to the dimensionless number as the 316L alloy. The dimensionless number predicts both macro and meso-scale features in HT processing, thus offering a design tool for choosing process parameters in DED additive manufacturing. Also, the ability to control or increase cooling rates can enhance the ability to promote metastability as well as control meso-scale chemical distributions of alloy samples.

1.
B.
Cantor
,
I. T.
Chang
,
P.
Knight
, and
A. J.
Vincent
, “
Microstructural development in equiatomic multicomponent alloys
,”
Mater. Sci. Eng., A
375–377
,
213
218
(
2004
).
2.
J. W.
Yeh
,
S. K.
Chen
,
S. J.
Lin
,
J. Y.
Gan
,
T. S.
Chin
,
T. T.
Shun
,
C. H.
Tsau
, and
S. Y.
Chang
, “
Nanostructured high‐entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes
,”
Adv. Eng. Mater.
6
(
5
),
299
303
(
2004
).
3.
D. B.
Miracle
and
O. N.
Senkov
, “
A critical review of high entropy alloys and related concepts
,”
Acta Mater.
122
,
448
511
(
2017
).
4.
D. B.
Miracle
,
J. D.
Miller
,
O. N.
Senkov
,
C.
Woodward
,
M. D.
Uchic
, and
J.
Tiley
, “
Exploration and development of high entropy alloys for structural applications
,”
Entropy
16
(
1
),
494
525
(
2014
).
5.
O. N.
Senkov
,
J. D.
Miller
,
D. B.
Miracle
, and
C.
Woodward
, “
Accelerated exploration of multi-principal element alloys with solid solution phases
,”
Nat. Commun.
6
(
1
),
6529
(
2015
).
6.
O. N.
Senkov
,
J. D.
Miller
,
D. B.
Miracle
, and
C.
Woodward
, “
Accelerated exploration of multi-principal element alloys for structural applications
,”
CALPHAD
50
,
32
48
(
2015
).
7.
K. G.
Pradeep
,
C. C.
Tasan
,
M. J.
Yao
,
Y.
Deng
,
H.
Springer
, and
D.
Raabe
, “
Non-equiatomic high entropy alloys: Approach towards rapid alloy screening and property-oriented design
,”
Mater. Sci. Eng., A
648
,
183
192
(
2015
).
8.
D.
Ma
,
M.
Yao
,
K. G.
Pradeep
,
C. C.
Tasan
,
H.
Springer
, and
D.
Raabe
, “
Phase stability of non-equiatomic CoCrFeMnNi high entropy alloys
,”
Acta Mater.
98
,
288
296
(
2015
).
9.
S.
Shao
,
M. M.
Khonsari
,
S.
Guo
,
W. J.
Meng
, and
N.
Li
, “
Overview: Additive manufacturing enabled accelerated design of Ni-based alloys for improved fatigue life
,”
Addit. Manuf.
29
,
100779
(
2019
).
10.
M.
Moorehead
,
K.
Bertsch
,
M.
Niezgoda
,
C.
Parkin
,
M.
Elbakhshwan
,
K.
Sridharan
,
C.
Zhang
,
D.
Thoma
, and
A.
Couet
, “
High-throughput synthesis of Mo-Nb-Ta-W high-entropy alloys via additive manufacturing
,”
Mater. Des.
187
,
108358
(
2020
).
11.
K. S.
Vecchio
,
O. F.
Dippo
,
K. R.
Kaufmann
, and
X.
Liu
, “
High-throughput rapid experimental alloy development (HT-READ)
,”
Acta Mater.
221
,
117352
(
2021
).
12.
D. J.
Thoma
,
C.
Charbon
,
G. K.
Lewis
, and
R. B.
Nemec
, “
Directed light fabrication of iron-based materials
,”
MRS Online Proc. Libr. Arch.
397
,
341
346
(
1995
).
13.
J. W.
Elmer
,
S. M.
Allen
, and
T. W.
Eagar
, “
Microstructural development during solidification of stainless steel alloys
,”
Metall. Trans. A
20
(
10
),
2117
2131
(
1989
).
14.
B.
Zheng
,
Y.
Zhou
,
J. E.
Smugeresky
,
J. M.
Schoenung
, and
E. J.
Lavernia
, “
Thermal behavior and microstructural evolution during laser deposition with laser-engineered net shaping: Part I. Numerical calculations
,”
Metall. Mater. Trans. A
39
(
9
),
2228
2236
(
2008
).
15.
B.
Zheng
,
Y.
Zhou
,
J. E.
Smugeresky
,
J. M.
Schoenung
, and
E. J.
Lavernia
, “
Thermal behavior and microstructure evolution during laser deposition with laser-engineered net shaping: Part II. Experimental investigation and discussion
,”
Metall. Mater. Trans. A
39
(
9
),
2237
2245
(
2008
).
16.
K. Y.
Tsai
,
M. H.
Tsai
, and
J. W.
Yeh
, “
Sluggish diffusion in Co–Cr–Fe–Mn–Ni high-entropy alloys
,”
Acta Mater.
61
(
13
),
4887
4897
(
2013
).
17.
D. L.
Beke
and
G.
Erdélyi
, “
On the diffusion in high-entropy alloys
,”
Mater. Lett.
164
,
111
113
(
2016
).
18.
S.
Wei
,
F.
He
, and
C. C.
Tasan
, “
Metastability in high-entropy alloys: A review
,”
J. Mater. Res.
33
(
19
),
2924
2937
(
2018
).
19.
S. A.
Kube
and
J.
Schroers
, “
Metastability in high entropy alloys
,”
Scr. Mater.
186
,
392
400
(
2020
).
20.
Z.
Li
,
K. G.
Pradeep
,
Y.
Deng
,
D.
Raabe
, and
C. C.
Tasan
, “
Metastable high-entropy dual-phase alloys overcome the strength–ductility trade-off
,”
Nature
534
(
7606
),
227
230
(
2016
).
21.
S. S.
Nene
,
M.
Frank
,
K.
Liu
,
R. S.
Mishra
,
B. A.
McWilliams
, and
K. C.
Cho
, “
Extremely high strength and work hardening ability in a metastable high entropy alloy
,”
Sci. Rep.
8
(
1
),
9920
(
2018
).
22.
M.
Van Elsen
,
F.
Al‐Bender
, and
J. P.
Kruth
, “
Application of dimensional analysis to selective laser melting
,”
Rapid Prototyping J.
14
,
15–22
(
2008
).
23.
Z.
Wang
and
M.
Liu
, “
Dimensionless analysis on selective laser melting to predict porosity and track morphology
,”
J. Mater. Process. Technol.
273
,
116238
(
2019
).
24.
T.
Mukherjee
,
V.
Manvatkar
,
A.
De
, and
T.
DebRoy
, “
Dimensionless numbers in additive manufacturing
,”
J. Appl. Phys.
121
(
6
),
064904
(
2017
).
25.
B.
Rankouhi
,
A. K.
Agrawal
,
F. E.
Pfefferkorn
, and
D. J.
Thoma
, “
A dimensionless number for predicting universal processing parameter boundaries in metal powder bed additive manufacturing
,”
Manuf. Lett.
27
,
13
17
(
2021
).
26.
E.
Buckingham
, “
On physically similar systems; illustrations of the use of dimensional equations
,”
Phys. Rev.
4
(
4
),
345
(
1914
).
27.
S. J.
Wolff
,
S.
Lin
,
E. J.
Faierson
,
W. K.
Liu
,
G. J.
Wagner
, and
J.
Cao
, “
A framework to link localized cooling and properties of directed energy deposition (DED)-processed Ti-6Al-4V
,”
Acta Mater.
132
,
106
117
(
2017
).
28.
D.
Rosenthal
, “
The theory of moving sources of heat and its application of metal treatments
,”
Trans. ASME
68
,
849
866
(
1946
).
29.
F.
Cverna
and
ASMIMPD Committee
,
ASM Ready Reference: Thermal Properties of Metals
(
ASM International
,
2002
).
30.
R.
Sampson
,
R.
Lancaster
,
M.
Sutcliffe
,
D.
Carswell
,
C.
Hauser
, and
J.
Barras
, “
An improved methodology of melt pool monitoring of direct energy deposition processes
,”
Opt. Laser Technol.
127
,
106194
(
2020
).
31.
K. M.
Bertsch
,
G. M.
de Bellefon
,
B.
Kuehl
, and
D. J.
Thoma
, “
Origin of dislocation structures in an additively manufactured austenitic stainless steel 316L
,”
Acta Mater.
199
,
19
33
(
2020
).
32.
W.
Kurz
,
Fundamentals of Solidification
(
Trans Tech Publications
,
1989
), Vol.
194
.
33.
S.
Katayama
and
A.
Matsunawa
, “
Solidification microstructure of laser welded stainless steels
,”
ICALEO
1984
,
60
67
.
34.
A. K.
Agrawal
,
G. M.
de Bellefon
, and
D.
Thoma
, “
High-throughput experimentation for microstructural design in additively manufactured 316L stainless steel
,”
Mater. Sci. Eng., A
793
,
139841
(
2020
).

Supplementary Material

You do not currently have access to this content.