In this work, we studied single-pulse ablation dynamics of a temporally modulated continuous wave laser–material interaction with Al using in situ multimodal time-resolved diagnostics that describe in detail the associated physical and chemical processes. Time-resolved scattering, emission imaging, and optical emission spectroscopy unveiled a sequence of events spread out across three distinct phases: (i) early phase ablation process, associated with particle generation and liquid Al column formation (<20 μs), (ii) secondary detonation when sufficient ejected material is accumulated over the surface (20–50 μs), and (iii) molten liquid Al pool oscillation on the surface, followed by large droplet ejection from the liquid pool (100–500 μs). Atomic Al and AlO were observed with optical emission spectroscopy at different ratios during the entire lifetime of the event, verifying the formation of oxidized Al vapor upon its interaction with air. Morphological and compositional characterization confirmed surface oxidation and material re-solidification in the form of protrusions produced during the irradiation process. This work provides insights into the complex physical and chemical mechanisms of single-pulse ablation in the sub-millisecond laser pulse regime, which are critically important for parameter optimization in a variety of laser processing, microfabrication, and deposition applications.

1.
J.
Tu
,
A. G.
Paleocrassas
,
N.
Reeves
, and
N.
Rajule
,
Opt. Lasers Eng.
55
,
275
(
2014
).
2.
B. N.
Chichkov
,
C.
Momma
,
S.
Nolte
,
F.
Von Alvensleben
, and
A.
Tünnermann
,
Appl. Phys. A
63
,
109
(
1996
).
3.
D.
Paeng
,
J. H.
Yoo
,
J.
Yeo
,
D.
Lee
,
E.
Kim
,
S. H.
Ko
, and
C. P.
Grigoropoulos
,
Adv. Mater.
27
,
2762
(
2015
).
4.
S. Z.
Khan
,
Y.
Yuan
,
A.
Abdolvand
,
M.
Schmidt
,
P.
Crouse
,
L.
Li
,
Z.
Liu
,
M.
Sharp
, and
K. G.
Watkins
,
J. Nanopart. Res.
11
,
1421
(
2009
).
5.
A.
Abdolvand
,
S. Z.
Khan
,
Y.
Yuan
,
P. L.
Crouse
,
M. J. J.
Schmidt
,
M.
Sharp
,
Z.
Liu
, and
L.
Li
,
Appl. Phys. A
91
,
365
(
2008
).
6.
C.
Kerse
,
H.
Kalaycloĝ Lu
,
P.
Elahi
,
B.
Çetin
,
D. K.
Kesim
,
Ö.
Akçaalan
,
S.
Yavaş
,
M. D.
Aşlk
,
B.
Öktem
,
H.
Hoogland
,
R.
Holzwarth
, and
F. Ö.
Ilday
,
Nature
537
,
84
(
2016
).
7.
B.
Adelmann
and
R.
Hellmann
,
J. Mater. Process. Technol.
221
,
80
(
2015
).
8.
S.
Ly
,
G.
Guss
,
A. M.
Rubenchik
,
W. J.
Keller
,
N.
Shen
,
R. A.
Negres
, and
J.
Bude
,
Sci. Rep.
9
,
8152
(
2019
).
9.
D.
Bäuerle
,
Laser Processing and Chemistry
, 4th ed. (
Springer, Berlin/Heidelberg
,
2011
).
10.
M.
Park
,
J.
Jeun
,
G.
Han
, and
C. P.
Grigoropoulos
,
Appl. Phys. Lett.
116
,
234105
(
2020
).
11.
C. F.
Bohren
and
D. R.
Huffman
,
Absorption and Scattering of Light by Small Particles
(
Wiley
,
1998
).
12.
A. G.
Mathewson
and
H. P.
Myers
,
Phys. Scr.
4
,
291
(
1971
).
13.
N.
Farid
,
S. S.
Harilal
,
H.
Ding
, and
A.
Hassanein
,
Appl. Phys. Lett.
103
,
191112
(
2013
).
14.
M.
Boueri
,
M.
Baudelet
,
J.
Yu
,
X.
Mao
,
S. S.
Mao
, and
R.
Russo
,
Appl. Surf. Sci.
255
,
9566
(
2009
).
15.
W.
van Hoeve
,
S.
Gekle
,
J. H.
Snoeijer
,
M.
Versluis
,
M. P.
Brenner
, and
D.
Lohse
,
Phys. Fluids
22
,
122003
(
2010
).
16.
S. P.
Lin
and
R. D.
Reitz
,
Annu. Rev. Fluid Mech.
30
,
85
(
1998
).
17.
J. J.
Valencia
and
P. N.
Quested
,
ASM Handbook Volume 15: Casting
(
ASM International
,
2008
), p.
468
.
18.
V.
Kaufman
and
W. C.
Martin
,
J. Phys. Chem. Ref. Data
20
,
775
(
1991
).
19.
X.
Bai
,
V.
Motto-Ros
,
W.
Lei
,
L.
Zheng
, and
J.
Yu
,
Spectrochim. Acta, Part B
99
,
193
(
2014
).
20.
O.
Albert
,
S.
Roger
,
Y.
Glinec
,
J. C.
Loulergue
,
J.
Etchepare
,
C.
Boulmer-Leborgne
,
J.
Perrière
, and
E.
Millon
,
Appl. Phys. A
76
,
319
(
2003
).
21.
R. E.
Russo
,
X.
Mao
,
J. J.
Gonzalez
,
V.
Zorba
, and
J.
Yoo
,
Anal. Chem.
85
,
6162
(
2013
).
22.
M. H. A.
Shaim
and
H. E.
Elsayed-Ali
,
J. Appl. Phys.
122
,
203301
(
2017
).

Supplementary Material

You do not currently have access to this content.