Ternary chalcogenides, having large crystalline unit cells and van der Waals stacking of layers, are expected to be poor thermal conductors and good thermoelectric (TE) materials. We are reporting that layered Bi4GeTe7 with alternating quintuplet-septuplet layers of Bi2Te3 and Bi2GeTe4 has an ultralow thermal conductivity of κtotal ∼ 0.42 W m−1 K−1 because of a high degree of anharmonicity as estimated from the large Gru¨neisen parameter (γ ∼ 4.07) and low Debye temperature (θd ∼ 135 K). The electron dominated charge transport has been realized from the Seebeck coefficient, S ∼ −82 μV/K, at 380 K and a Hall carrier concentration of ne ∼ 9.8 × 1019 cm−3 at 300 K. Observation of weak antilocalization due to the spin–orbit coupling of heavy Bi and Te also advocates Bi4GeTe7 to be a topological quantum material. The cross-sectional transmission electron microscopy images show the inherent stacking of hetero-layers, which are leading to a large anharmonicity for poor phonon propagation. Thus, being a poor thermal conductor with a TE figure of merit, ZT ∼ 0.24, at 380 K, Bi4GeTe7 is a good material for TE applications.

1.
D. M.
Rowe
,
Thermoelectrics Handbook: Macro to Nano
(
CRC/Taylor & Francis
,
2005
).
2.
P.
Acharyya
,
T.
Ghosh
,
K.
Pal
,
K.
Kundu
,
K.
Singh Rana
,
J.
Pandey
,
A.
Soni
,
U. V.
Waghmare
, and
K.
Biswas
,
J. Am. Chem. Soc.
142
(
36
),
15595
15603
(
2020
).
3.
S.
Acharya
,
J.
Pandey
, and
A.
Soni
,
ACS Appl. Energy Mater.
2
(
1
),
654
660
(
2019
).
4.
J.
Pandey
,
S.
Mukherjee
,
D.
Rawat
,
S.
Athar
,
K. S.
Rana
,
R. C.
Mallik
, and
A.
Soni
,
ACS Appl. Energy Mater.
3
(
3
),
2175
2181
(
2020
).
5.
N. K.
Singh
and
A.
Soni
,
Appl. Phys. Lett.
117
(
12
),
123901
(
2020
).
6.
J. P.
Heremans
,
Nat. Phys.
11
(
12
),
990
991
(
2015
).
7.
G. S.
Nolas
,
J.
Sharp
, and
H. J.
Goldsmid
,
Thermoelectrics: Basic Principles and New Materials Developments
(
Springer
,
2001
).
8.
M. G.
Kanatzidis
,
Chem. Mater.
22
(
3
),
648
659
(
2010
).
9.
S.
Bathula
,
M.
Jayasimhadri
,
B.
Gahtori
,
N. K.
Singh
,
K.
Tyagi
,
A. K.
Srivastava
, and
A.
Dhar
,
Nanoscale
7
(
29
),
12474
12483
(
2015
).
10.
A.
Soni
,
Y.
Shen
,
M.
Yin
,
Y.
Zhao
,
L.
Yu
,
X.
Hu
,
Z.
Dong
,
K. A.
Khor
,
M. S.
Dresselhaus
, and
Q.
Xiong
,
Nano Lett.
12
(
8
),
4305
(
2012
).
11.
A.
Soni
,
Z.
Yanyuan
,
Y.
Ligen
,
M. K. K.
Aik
,
M. S.
Dresselhaus
, and
Q.
Xiong
,
Nano Lett.
12
(
3
),
1203
(
2012
).
12.
N. K.
Singh
,
S.
Bathula
,
B.
Gahtori
,
K.
Tyagi
,
D.
Haranath
, and
A.
Dhar
,
J. Alloys Compd.
668
,
152
158
(
2016
).
13.
N. K.
Singh
,
J.
Pandey
,
S.
Acharya
, and
A.
Soni
,
J. Alloys Compd.
746
,
350
355
(
2018
).
14.
Y.
Zhang
and
G. D.
Stucky
,
Chem. Mater.
26
(
1
),
837
848
(
2014
).
15.
R.
Venkatasubramanian
,
E.
Siivola
,
T.
Colpitts
, and
B.
O'Quinn
,
Nature
413
(
6856
),
597
602
(
2001
).
16.
H.-J.
Shang
,
F.-Z.
Ding
,
Y.
Deng
,
H.
Zhang
,
Z.-B.
Dong
,
W.-J.
Xu
,
D.-X.
Huang
,
H.-W.
Gu
, and
Z.-G.
Chen
,
Nanoscale
10
(
43
),
20189
20195
(
2018
).
17.
Q.
Guo
,
J.-B.
Vaney
,
R.
Virtudazo
,
R.
Minami
,
Y.
Michiue
,
Y.
Yamabe-Mitarai
, and
T.
Mori
,
Inorg. Chem.
57
(
9
),
5258
5266
(
2018
).
18.
C.
Shekhar
,
C. E.
ViolBarbosa
,
B.
Yan
,
S.
Ouardi
,
W.
Schnelle
,
G. H.
Fecher
, and
C.
Felser
,
Phys. Rev. B
90
(
16
),
165140
(
2014
).
19.
C.
Fu
,
Y.
Sun
, and
C.
Felser
,
APL Mater.
8
(
4
),
040913
(
2020
).
20.
M.
Neupane
,
S.-Y.
Xu
,
L. A.
Wray
,
Petersen
,
R.
Shankar
,
N.
Alidoust
,
C.
Liu
,
A.
Fedorov
,
H.
Ji
,
J. M.
Allred
,
Y. S.
Hor
,
T.-R.
Chang
,
H.-T.
Jeng
,
H.
Lin
,
A.
Bansil
,
R. J.
Cava
, and
a. M. Z.
Hasan
,
Phys. Rev. B
85
,
235406
(
2012
).
21.
E.
Papalazarou
,
L.
Khalil
,
M.
Caputo
,
L.
Perfetti
,
N.
Nilforoushan
,
H.
Deng
,
Z.
Chen
,
S.
Zhao
,
A.
Taleb-Ibrahimi
,
M.
Konczykowski
,
A.
Hruban
,
A.
Wołoś
,
A.
Materna
,
L.
Krusin-Elbaum
, and
M.
Marsi
,
Phys. Rev. Mater.
2
(
10
),
104202
(
2018
).
22.
V. L.
Kuznetsov
,
L. A.
Kuznetsova
, and
D. M.
Rowe
,
J. Phys. D
34
(
5
),
700
(
2001
).
23.
V. L.
Kuznetsov
,
L. A.
Kuznetsova
, and
D. M.
Rowe
,
J. Appl. Phys.
85
(
6
),
3207
3210
(
1999
).
24.
J.
Rodríguez-Carvajal
,
Physica B
192
(
1
),
55
69
(
1993
).
25.
L. A.
Kuznetsova
,
V. L.
Kuznetsov
, and
D. M.
Rowe
,
J. Phys. Chem. Solids
61
(
8
),
1269
1274
(
2000
).
26.
P. P.
Konstantinov
,
L. E.
Shelimova
,
E. S.
Avilov
,
M. A.
Kretova
, and
J. P.
Fleurial
,
J. Solid State Chem.
146
(
2
),
305
312
(
1999
).
27.
O. G.
Karpinsky
,
L. E.
Shelimova
,
M. A.
Kretova
, and
J. P.
Fleurial
,
J. Alloys Compd.
265
(
1
),
170
175
(
1998
).
28.
J.
Chen
,
X. Y.
He
,
K. H.
Wu
,
Z. Q.
Ji
,
L.
Lu
,
J. R.
Shi
,
J. H.
Smet
, and
Y. Q.
Li
,
Phys. Rev. B
83
(
24
),
241304
(
2011
).
29.
S.-P.
Chiu
and
J.-J.
Lin
,
Phys. Rev. B
87
(
3
),
035122
(
2013
).
30.
L.
Fu
,
C. L.
Kane
, and
E. J.
Mele
,
Phys. Rev. Lett.
98
(
10
),
106803
(
2007
).
31.
B.
Bhattacharyya
,
B.
Singh
,
R. P.
Aloysius
,
R.
Yadav
,
C.
Su
,
H.
Lin
,
S.
Auluck
,
A.
Gupta
,
T. D.
Senguttuvan
, and
S.
Husale
,
Sci. Rep.
9
(
1
),
7836
(
2019
).
32.
S.
Hikami
,
A. I.
Larkin
, and
Y.
Nagaoka
,
Prog. Theor. Phys.
63
(
2
),
707
710
(
1980
).
33.
N. K.
Singh
,
D.
Rawat
,
D.
Dey
,
A.
Elsukova
,
P. O. Å.
Persson
,
P.
Eklund
,
A.
Taraphder
, and
A.
Soni
, arXiv:2110.06587 (
2021
).
34.
P.
Sahu
,
J.-Y.
Chen
,
J. C.
Myers
, and
J.-P.
Wang
,
Appl. Phys. Lett.
112
(
12
),
122402
(
2018
).
35.
F.
von Rohr
,
A.
Schilling
, and
R. J.
Cava
,
J. Phys.: Condens. Matter
25
(
7
),
075804
(
2013
).
36.
H. S.
Kim
,
Z. M.
Gibbs
,
Y. L.
Tang
,
H.
Wang
, and
G. J.
Snyder
,
APL Mater.
3
(
4
),
041506
(
2015
).
37.
C. W.
Li
,
J.
Hong
,
A. F.
May
,
D.
Bansal
,
S.
Chi
,
T.
Hong
,
G.
Ehlers
, and
O.
Delaire
,
Nat. Phys.
11
(
12
),
1063
1069
(
2015
).
38.
E. S. R.
Gopal
,
Specific Heats at Low Temperatures
(
Plenum Press
,
1966
).
39.
D.
Bessas
,
I.
Sergueev
,
H. C.
Wille
,
J.
Perßon
,
D.
Ebling
, and
R. P.
Hermann
,
Phys. Rev. B
86
(
22
),
224301
(
2012
).
You do not currently have access to this content.