We report direct visualization of gigahertz-frequency acoustic waves in lithium niobate phononic circuits. Primary propagation parameters, such as the power flow angle and propagation loss, are measured by transmission-mode microwave impedance microscopy. Using a fast Fourier transform, we can separately analyze forward and backward propagating waves and quantitatively evaluate the propagation loss. Our work provides insightful information on the propagation, diffraction, and attenuation in piezoelectric thin films, which is highly desirable for designing and optimizing phononic devices for microwave signal processing.
References
1.
R.
Ruby
, “A snapshot in time: The future in filters for cell phones
,” IEEE Microwave Mag.
16
, 46
–59
(2015
).2.
T.
Bauer
, C.
Eggs
, K.
Wagner
, and P.
Hagn
, “A bright outlook for acoustic filtering: A new generation of very low-profile SAW, TC SAW, and BAW devices for module integration
,” IEEE Microwave Mag.
16
, 73
–81
(2015
).3.
A.
Ghosh
, A.
Maeder
, M.
Baker
, and D.
Chandramouli
, “5G evolution: A view on 5G cellular technology beyond 3GPP release 15
,” IEEE Access
7
, 127639
–127651
(2019
).4.
K. Y.
Hashimoto
, Surface Acoustic Wave Devices in Telecommunications: Modeling and Simulation
(Springer-Verlag
, Berlin
, 2000
).5.
K. Y.
Hashimoto
, RF Bulk Acoustic Filters for Communications
(Artech House
, Boston
, 2009
).6.
A. H.
Meitzler
et al., IEEE Standard on Piezoelectricity, ANSI/IEEE Std 176-1987, 1-1988
(IEEE
, 1988
).7.
S.
Gong
, R.
Lu
, Y.
Yang
, L.
Gao
, and A. E.
Hassanien
, “Microwave acoustic devices: Recent advances and outlook
,” IEEE J. Microwaves
1
, 601
–609
(2021
).8.
M.
Pijolat
, A.
Reinhardt
, E.
Defay
, C.
Deguet
, D.
Mercier
, M.
Aid
, J. S.
Moulet
, B.
Ghyselen
, D.
Gachon
, and S.
Ballandras
, “Large Q × f product for HBAR using Smart Cut ™ transfer of LiNbO3 thin layers onto LiNbO3 substrate
,” in 2008 IEEE Ultrasonics Symposium
(IEEE
, 2008
), pp. 201
–204
.9.
Y.
Yang
, R.
Lu
, L.
Gao
, and S.
Gong
, “10–60-GHz electromechanical resonators using thin-film lithium niobate
,” IEEE Trans. Microwave Theory Tech.
68
, 5211
–5220
(2020
).10.
Y.
Yao
, B.
Liu
, H.
Zhang
, H.
Liu
, and J.
Liu
, “Design of thin-film lithium niobate structure for integrated filtering and sensing applications
,” Results Phys.
17
, 103082
(2020
).11.
Y.
Yang
, R.
Lu
, L.
Gao
, and S.
Gong
, “4.5 GHz lithium niobate MEMS filters with 10% fractional bandwidth for 5G front-ends
,” J. Microelectromech. Syst.
28
, 575
–577
(2019
).12.
C. J.
Sarabalis
, Y. D.
Dahmani
, A. Y.
Cleland
, and A. H.
Safavi-Naeini
, “S-band delay lines in suspended lithium niobate
,” J. Appl. Phys.
127
, 054501
(2020
).13.
Z.
Chen
, Q.
Xu
, K.
Zhang
, W. H.
Wong
, D. L.
Zhang
, E. Y. B.
Pun
, and C.
Wang
, “Efficient erbium-doped thin-film lithium niobate waveguide amplifiers
,” Opt. Lett.
46
, 5
(2021
).14.
D.
Royer
and E.
Dieulesaint
, Elastic Waves in Solids I
(Springer-Verlag Berlin
, 1996
).15.
A.
Mahjoubfar
, K.
Goda
, A.
Ayazi
, A.
Fard
, S. H.
Kim
, and B.
Jalali
, “High-speed nanometer-resolved imaging vibrometer and velocimeter
,” Appl. Phys. Lett.
98
, 101107
(2011
).16.
Y.
Xu
, W.
Fu
, C.-L.
Zou
, Z.
Shen
, and H. X.
Tang
, “High quality factor surface Fabry–Pérot cavity of acoustic waves
,” Appl. Phys. Lett.
112
, 073505
(2018
).17.
K.
Kokkonen
and M.
Kaivola
, “Scanning heterodyne laser interferometer for phase-sensitive absolute-amplitude measurements of surface vibrations
,” Appl. Phys. Lett.
92
, 063502
(2008
).18.
Z.
Shen
, X.
Han
, C.-L.
Zou
, and H. X.
Tang
, “Phase sensitive imaging of 10 GHz vibrations in an AlN microdisk resonator
,” Rev. Sci. Instrum.
88
, 123709
(2017
).19.
R.
Whatmore
, P.
Goddard
, B.
Tanner
, and G.
Clark
, “Direct imaging of travelling Rayleigh waves by stroboscopic x-ray topography
,” Nature
299
, 44
(1982
).20.
E.
Zolotoyabko
, D.
Shilo
, W.
Sauer
, E.
Pernot
, and J.
Baruchel
, “Visualization of 10 μm surface acoustic waves by stroboscopic x-ray topography
,” Appl. Phys. Lett.
73
, 2278
(1998
).21.
D.
Roshchupkin
, T.
Fournier
, M.
Brunel
, O.
Plotitsyna
, and N.
Sorokin
, “Scanning electron microscopy observation of excitation of the surface acoustic waves by the regular domain structures in the LiNbO3 crystals
,” Appl. Phys. Lett.
60
, 2330
(1992
).22.
D.
Roshchupkin
, M.
Brunel
, R.
Tucoulou
, E.
Bigler
, and N.
Sorokin
, “Reflection of surface acoustic waves on domain walls in a LiNbO3 crystal
,” Appl. Phys. Lett.
64
, 164
(1994
).23.
L.
Zheng
, D.
Wu
, X.
Wu
, and K.
Lai
, “Visualization of surface-acoustic-wave potential by transmission-mode microwave impedance microscopy
,” Phys. Rev. Appl.
9
, 061002
(2018
).24.
L.
Zheng
, L.
Shao
, M.
Loncar
, and K.
Lai
, “Imaging acoustic waves by microwave microscopy: Microwave impedance microscopy for visualizing gigahertz acoustic waves
,” IEEE Microwave Mag.
21
, 60
(2020
).25.
D.
Lee
, Q.
Liu
, L.
Zheng
, X.
Ma
, H.
Li
, M.
Li
, and K.
Lai
, “Direct visualization of gigahertz acoustic wave propagation in suspended phononic circuits
,” Phys. Rev. Appl.
16
, 034047
(2021
).26.
R. S.
Weis
and T. K.
Gaylord
, “Lithium niobate: Summary of physical properties and crystal structure
,” Appl. Phys. A
37
, 191
–203
(1985
).27.
I. E.
Kuznetsova
, B. D.
Zaitsev
, A. A.
Teplykh
, S. G.
Joshi
, and A. S.
Kuznetsova
, “The power flow angle of acoustic waves in thin piezoelectric plates
,” IEEE Trans. Ultrason., Ferroelectr., Freq. Control
55
, 9
(2008
).28.
R.
Lu
and S.
Gong
, “Power flow angles of GHz propagating acoustic waves in thin-film lithium niobate
,” in IEEE International Ultrasonic Symposium
(2021
).29.
R.
Lu
, Y.
Yang
, and S.
Gong
, “Acoustic loss in thin-film lithium niobate: An experimental study
,” IEEE J. Microelectromech. Syst.
30
, 632
–641
(2021
).© 2021 Author(s). Published under an exclusive license by AIP Publishing.
2021
Author(s)
You do not currently have access to this content.