We experimentally achieve selective wave filtering and polarization control in a three-dimensional elastic frame embedding local resonators. By connecting multi-resonating elements to a frame structure, a complete low-frequency, subwavelength bandgap with strong selective filtering properties is obtained. Theory and experiments demonstrate the metaframe capability to selectively stop transverse waves while allowing longitudinal wave propagation as in “fluid-like” elasticity. This peculiar behavior, together with the complete bandgap structure, may open opportunities in the context of wave control, envisaging concurrent applications for three-dimensional filters and elastic wave polarizers.

1.
J. D.
Joannopoulos
,
S. G.
Johnson
,
J. N.
Winn
, and
R. D.
Meade
,
Photonic Crystals, Molding the Flow of Light
, 2nd ed. (
Princeton University Press
,
Princeton, NJ
,
2008
).
2.
M. S.
Kushwaha
,
P.
Halevi
,
L.
Dobrzynski
, and
B.
Djafari-Rouhani
, “
Acoustic band structure of periodic elastic composites
,”
Phys. Rev. Lett.
71
,
2022
(
1993
).
3.
V.
Laude
,
Phononic Crystals, Artificial Crystals for Sonic, Acoustic, and Elastic Waves
, De Gruyter Studies in Mathematical Physics (
De Gruyter
,
2015
), Vol.
26
.
4.
M. I.
Hussein
,
M. J.
Leamy
, and
M.
Ruzzene
, “
Dynamics of phononic materials and structures: Historical origins, recent progress, and future outlook
,”
Appl. Mech. Rev.
66
(
4
),
040802
(
2014
).
5.
Z.
Liu
,
X.
Zhang
,
Y.
Mao
,
Y. Y.
Zhu
,
Z.
Yang
,
C. T.
Chan
, and
P.
Sheng
, “
Locally resonant sonic materials
,”
Science
289
(
5485
),
1734
1736
(
2000
).
6.
G.
Ma
and
P.
Sheng
, “
Acoustic metamaterials: From local resonances to broad horizons
,”
Sci. Adv.
2
(
2
),
e1501595
(
2016
).
7.
A. E.
Miroshnichenko
,
S.
Flach
, and
Y. S.
Kivshar
, “
Fano resonances in nanoscale structures
,”
Rev. Mod. Phys.
82
,
2257
2298
(
2010
).
8.
F.
Lemoult
,
M.
Fink
, and
G.
Lerosey
, “
Acoustic resonators for far-field control of sound on a subwavelength scale
,”
Phys. Rev. Lett.
107
,
064301
(
2011
).
9.
R. V.
Craster
and
S.
Guenneau
,
Acoustic Metamaterials Negative Refraction, Imaging, Lensing and Cloaking
, Springer Series in Materials Science (
Springer
,
2013
).
10.
R. V.
Craster
and
S.
Guenneau
,
World Scientific Handbook of Metamaterials and Plasmonics: Volume 2: Elastic, Acoustic and Seismic Metamaterials
(
World Scientific
,
Singapore
,
2017
).
11.
S.
Brûlé
,
E. H.
Javelaud
,
S.
Enoch
, and
S.
Guenneau
, “
Experiments on seismic metamaterials: Molding surface waves
,”
Phys. Rev. Lett.
112
,
133901
(
2014
).
12.
Y.
Achaoui
,
T.
Antonakakis
,
S.
Brule
,
R. V.
Craster
,
S.
Enoch
, and
S.
Guenneau
, “
Clamped seismic metamaterials: Ultra-low frequency stop bands
,”
New J. Phys.
19
,
063022
(
2017
).
13.
G.
Finocchio
,
O.
Casablanca
,
G.
Ricciardi
,
U.
Alibrandi
,
F.
Garescì
,
M.
Chiappini
, and
B.
Azzerboni
, “
Seismic metamaterials based on isochronous mechanical oscillators
,”
Appl. Phys. Lett.
104
,
191903
(
2014
).
14.
A.
Colombi
,
P.
Roux
,
S.
Guenneau
,
P.
Gueguen
, and
R. V.
Craster
, “
Forests as a natural seismic metamaterial: Rayleigh wave bandgaps induced by local resonances
,”
Sci. Rep.
6
,
19238
(
2016
).
15.
M.
Miniaci
,
A.
Krushynska
,
F.
Bosia
, and
N. M.
Pugno
, “
Large scale mechanical metamaterials as seismic shields
,”
New J. Phys.
18
,
083041
(
2016
).
16.
A.
Colombi
,
D.
Colquitt
,
P.
Roux
,
S.
Guenneau
, and
R. V.
Craster
, “
A seismic metamaterial: The resonant metawedge
,”
Sci. Rep.
6
,
27717
(
2016
).
17.
A.
Colombi
,
V.
Ageeva
,
R. J.
Smith
,
A.
Clare
,
R.
Patel
,
M.
Clark
,
D.
Colquitt
,
P.
Roux
,
S.
Guenneau
, and
R. V.
Craster
, “
Enhanced sensing and conversion of ultrasonic Rayleigh waves by elastic metasurfaces
,”
Sci. Rep.
7
,
6750
(
2017
).
18.
K. H.
Matlack
,
A.
Bauhofer
,
S.
Krödel
,
A.
Palermo
, and
C.
Daraio
, “
Composite 3D-printed metastructures for low-frequency and broadband vibration absorption
,”
Proc. Natl. Acad. Sci.
113
,
8386
8390
(
2016
).
19.
N.
Kaina
,
M.
Fink
, and
G.
Lerosey
, “
Composite media mixing Bragg and local resonances for highly attenuating and broad bandgaps
,”
Sci. Rep.
3
,
3240
(
2013
).
20.
M.
Moscatelli
,
R.
Ardito
,
L.
Driemeier
, and
C.
Comi
, “
Band-gap structure in two- and three-dimensional cellular locally resonant materials
,”
J. Sound Vib.
454
,
73
84
(
2019
).
21.
M.
Molerón
and
C.
Daraio
, “
Acoustic metamaterial for subwavelength edge detection
,”
Nat. Commun.
6
,
8037
(
2015
).
22.
V.
Romero-García
,
R.
Picó
,
A.
Cebrecos
,
V. J.
Sánchez-Morcillo
, and
K.
Staliunas
, “
Enhancement of sound in chirped sonic crystals
,”
Appl. Phys. Lett.
102
,
091906
(
2013
).
23.
Y.
Chen
,
H.
Liu
,
M.
Reilly
,
H.
Bae
, and
M.
Yu
, “
Enhanced acoustic sensing through wave compression and pressure amplification in anisotropic metamaterials
,”
Nat. Commun.
5
,
5247
(
2014
).
24.
Y.
Liu
,
Z.
Liang
,
F.
Liu
,
O.
Diba
,
A.
Lamb
, and
J.
Li
, “
Source illusion devices for flexural lamb waves using elastic metasurfaces
,”
Phys. Rev. Lett.
119
,
034301
(
2017
).
25.
S. H.
Mousavi
,
A. B.
Khanikaev
, and
Z.
Wang
, “
Topologically protected elastic waves in phononic metamaterials
,”
Nat. Commun.
6
,
8682
(
2015
).
26.
R.
Süsstrunk
and
S. D.
Huber
, “
Observation of phononic helical edge states in a mechanical topological insulator
,”
Science
349
(
6243
),
47
50
(
2015
).
27.
G. J.
Chaplain
,
J. M.
De Ponti
,
G.
Aguzzi
,
A.
Colombi
, and
R. V.
Craster
, “
Topological rainbow trapping for elastic energy harvesting in graded Su-Schrieffer-Heeger systems
,”
Phys. Rev. Appl.
14
,
054035
(
2020
).
28.
C.
Sugino
and
A.
Erturk
, “
Analysis of multifunctional piezoelectric metastructures for low-frequency bandgap formation and energy harvesting
,”
J. Phys. D
51
,
215103
(
2018
).
29.
J. M.
De Ponti
,
A.
Colombi
,
R.
Ardito
,
F.
Braghin
,
A.
Corigliano
, and
R. V.
Craster
, “
Graded elastic metasurface for enhanced energy harvesting
,”
New J. Phys.
22
,
013013
(
2020
).
30.
J. M.
De Ponti
,
A.
Colombi
,
E.
Riva
,
R.
Ardito
,
F.
Braghin
,
A.
Corigliano
, and
R. V.
Craster
, “
Experimental investigation of amplification, via a mechanical delay-line, in a rainbow-based metamaterial for energy harvesting
,”
Appl. Phys. Lett.
117
,
143902
(
2020
).
31.
E.
Baravelli
and
M.
Ruzzene
, “
Internally resonating lattices for bandgap generation and low-frequency vibration control
,”
J. Sound Vib.
332
(
25
),
6562
6579
(
2013
).
32.
C.
Sugino
,
S.
Leadenham
,
M.
Ruzzene
, and
A.
Erturk
, “
On the mechanism of bandgap formation in locally resonant finite elastic metamaterials
,”
J. Appl. Phys.
120
,
134501
(
2016
).
33.
E. G.
Williams
,
P.
Roux
,
M.
Rupin
, and
W. A.
Kuperman
, “
Theory of multiresonant metamaterials for A0 lamb waves
,”
Phys. Rev. B
91
,
104307
(
2015
).
34.
J. Y.
Yoritomo
and
R. L.
Weaver
, “
On band gap predictions for multiresonant metamaterials on plates
,”
J. Acoust. Soc. Am.
139
,
1282
(
2016
).
35.
D. J.
Colquitt
,
A.
Colombi
,
R. V.
Craster
,
P.
Roux
, and
S. R. L.
Guenneau
, “
Seismic metasurfaces: Sub-wavelength resonators and Rayleigh wave interaction
,”
J. Mech. Phys. Solids
99
,
379
393
(
2017
).
36.
C.
Comi
,
M.
Moscatelli
, and
J. J.
Marigo
, “
Two scale homogenization in ternary locally resonant metamaterials
,”
Mater. Phys. Mech.
44
(
1
),
8
18
(
2020
).
37.
G.
Ma
,
C.
Fu
,
G.
Wang
,
P.
del Hougne
,
J.
Christensen
,
Y.
Lai
, and
P.
Sheng
, “
Polarization bandgaps and fluid-like elasticity in fully solid elastic metamaterials
,”
Nat. Commun.
7
,
13536
(
2016
).
38.
Y.
Lai
,
Y.
Wu
,
P.
Sheng
, and
Z.-Q.
Zhang
, “
Hybrid elastic solids
,”
Nat. Mater.
10
,
620
624
(
2011
).
39.
M.
Miniaci
,
R. K.
Pal
,
R.
Manna
, and
M.
Ruzzene
, “
Valley-based splitting of topologically protected helical waves in elastic plates
,”
Phys. Rev. B
100
,
024304
(
2019
).
40.
R. K.
Sinha
and
Y.
Kalra
, “
Design of optical waveguide polarizer using photonic band gap
,”
Opt. Express
14
(
22
),
10790
10794
(
2006
).
41.
J.
Zimmermann
,
M.
Kamp
,
A.
Forchel
, and
R.
März
, “
Photonic crystal waveguide directional couplers as wavelength selective optical filters
,”
Opt. Commun.
230
(
4–6
),
387
392
(
2004
).
42.
L.
D'Alessandro
,
E.
Belloni
,
G.
D'Alo
,
L.
Daniel
,
R.
Ardito
,
A.
Corigliano
, and
F.
Braghin
, “
Modelling and experimental verification of a single phase three-dimensional lightweight locally resonant elastic metamaterial with complete low frequency bandgap
,” in
11th International Congress on Engineered Material Platforms for Novel Wave Phenomena, Metamaterials
(
IEEE
,
2017
), pp.
70
72
.
43.
P.
Rajagopal
,
M.
Drozdz
,
E. A.
Skelton
,
M. J. S.
Lowe
, and
R. V.
Craster
, “
On the use of absorbing layers to simulate the propagation of elastic waves in unbounded isotropic media using commercially available finite element packages
,”
NDT&E Int.
51
,
30
40
(
2012
).
44.
A.
Krushynska
,
V. G.
Kouznetsova
, and
M. G. D.
Geers
, “
Visco-elastic effects on wave dispersion in three-phase acoustic metamaterials
,”
J. Mech. Phys. Solids
96
,
29
47
(
2016
).
45.
L.
D'Alessandro
,
A.
Krushynska
,
R.
Ardito
,
N. M.
Pugno
, and
A.
Corigliano
, “
A design strategy to match the band gap of periodic and aperiodic metamaterials
,”
Sci. Rep.
10
(
1
),
16403
(
2020
).

Supplementary Material

You do not currently have access to this content.