We propose a miniaturized photonic switch, which utilizes (recently discovered) plasmon analog of index enhancement. An index is tuned via a control (auxiliary) pulse. The operation principle of the proposed device, composed of a few layers of nanorod dimers, is different than the conventional photonic switches. In the proposed device, a stop band is created at the desired frequency determined by the control pulse frequency. Calculated modulation depths are quite large, and response time is determined by the plasmon lifetime. The method we propose here is based on linear operation that requires low power and has very small foot-print that satisfies the major needs to be the choice of a switching scheme for integrated optics.

1.
Y.
Liu
and
X.
Zhang
, “
Metamaterials: A new frontier of science and technology
,”
Chem. Soc. Rev.
40
,
2494
2507
(
2011
).
2.
E.
Yablonovitch
, “
Inhibited spontaneous emission in solid-state physics and electronics
,”
Phys. Rev. Lett.
58
,
2059
(
1987
).
3.
E.
Yablonovitch
,
T. J.
Gmitter
, and
K.-M.
Leung
, “
Photonic band structure: The face-centered-cubic case employing nonspherical atoms
,”
Phys. Rev. Lett.
67
,
2295
(
1991
).
4.
J. E. G. J.
Wijnhoven
and
W. L.
Vos
, “
Preparation of photonic crystals made of air spheres in titania
,”
Science
281
,
802
804
(
1998
).
5.
M. D.
Leistikow
,
A. P.
Mosk
,
E.
Yeganegi
,
S. R.
Huisman
,
A.
Lagendijk
, and
W. L.
Vos
, “
Inhibited spontaneous emission of quantum dots observed in a 3D photonic band gap
,”
Phys. Rev. Lett.
107
,
193903–1
5
(
2011
).
6.
J. C.
Knight
,
T. A.
Birks
,
P. S. J.
Russell
, and
D. M.
Atkin
, “
All-silica single-mode optical fiber with photonic crystal cladding
,”
Opt. Lett.
21
,
1547
1549
(
1996
).
7.
Y.
Akahane
,
T.
Asano
,
B.-S.
Song
, and
S.
Noda
, “
High-Q photonic nanocavity in a two-dimensional photonic crystal
,”
Nature
425
,
944
947
(
2003
).
8.
E.
Kuramochi
,
K.
Nozaki
,
A.
Shinya
,
K.
Takeda
,
T.
Sato
,
S.
Matsuo
,
H.
Taniyama
,
H.
Sumikura
, and
M.
Notomi
, “
Large-scale integration of wavelength-addressable all-optical memories on a photonic crystal chip
,”
Nat. Photonics
8
,
474
481
(
2014
).
9.
T. G.
Euser
,
H.
Wei
,
J.
Kalkman
,
Y.
Jun
,
A.
Polman
,
D. J.
Norris
, and
W. L.
Vos
, “
Ultrafast optical switching of three-dimensional Si inverse opal photonic band gap crystals
,”
J. Appl. Phys.
102
,
053111
(
2007
).
10.
E.
Yüce
,
G.
Ctistis
,
J.
Claudon
,
E.
Dupuy
,
R. D.
Buijs
,
B.
de Ronde
,
A. P.
Mosk
,
J.-M.
Gérard
, and
W. L.
Vos
, “
All-optical switching of a microcavity repeated at terahertz rates
,”
Opt. Lett.
38
,
374
376
(
2013
).
11.
J.
Wang
and
Y.
Long
, “
On-chip silicon photonic signaling and processing: A review
,”
Sci. Bull.
63
,
1267
1310
(
2018
).
12.
S.
Haroche
and
D.
Kleppner
, “
Cavity quantum electrodynamics
,”
Phys. Today
42
(
1
),
24
30
(
1989
).
13.
P.
Lodahl
,
A.
Floris Van Driel
,
I. S.
Nikolaev
,
A.
Irman
,
K.
Overgaag
,
D.
Vanmaekelbergh
, and
W. L.
Vos
, “
Controlling the dynamics of spontaneous emission from quantum dots by photonic crystals
,”
Nature
430
,
654
657
(
2004
).
14.
K. H.
Madsen
,
S.
Ates
,
T.
Lund-Hansen
,
A.
Löffler
,
S.
Reitzenstein
,
A.
Forchel
, and
P.
Lodahl
, “
Observation of non-Markovian dynamics of a single quantum dot in a micropillar cavity
,”
Phys. Rev. Lett.
106
,
233601
(
2011
).
15.
M. O.
Scully
, “
Single photon subradiance: Quantum control of spontaneous emission and ultrafast readout
,”
Phys. Rev. Lett.
115
,
243602
(
2015
).
16.
M. O.
Scully
and
A. A.
Svidzinsky
, “
The super of superradiance
,”
Science.
325
,
1510
1511
(
2009
).
17.
M. E.
Tasgin
, “
Many-particle entanglement criterion for superradiantlike states
,”
Phys. Rev. Lett.
119
,
033601
(
2017
).
18.
V. R.
Almeida
,
C. A.
Barrios
,
R. R.
Panepucci
, and
M.
Lipson
, “
All-optical control of light on a silicon chip
,”
Nature
431
,
1081
1084
(
2004
).
19.
Ö.
Boyraz
,
P.
Koonath
,
V.
Raghunathan
, and
B.
Jalali
, “
All optical switching and continuum generation in silicon waveguides
,”
Opt. Express
12
,
4094
4102
(
2004
).
20.
O.
Wada
, “
Femtosecond all-optical devices for ultrafast communication and signal processing
,”
New J. Phys.
6
,
183
(
2004
).
21.
G. T.
Reed
and
A. P.
Knights
,
Silicon Photonics: An Introduction
(
John Wiley & Sons
,
2004
).
22.
G.
Ctistis
,
E.
Yuce
,
A.
Hartsuiker
,
J.
Claudon
,
M.
Bazin
,
J.-M.
Gérard
, and
W. L.
Vos
, “
Ultimate fast optical switching of a planar microcavity in the telecom wavelength range
,”
Appl. Phys. Lett.
98
,
161114
(
2011
).
23.
K.
Fan
and
W. J.
Padilla
, “
Dynamic electromagnetic metamaterials
,”
Mater. Today
18
,
39
50
(
2015
).
24.
Q.
He
,
S.
Sun
,
L.
Zhou
 et al, “
Tunable/reconfigurable metasurfaces: Physics and applications
,”
Research
2019
,
1849272
.
25.
L.
Kang
,
R. P.
Jenkins
, and
D. H.
Werner
, “
Recent progress in active optical metasurfaces
,”
Adv. Opt. Mater.
7
,
1801813
(
2019
).
26.
A.
Panahpour
,
A.
Mahmoodpoor
, and
A. V.
Lavrinenko
, “
Refraction enhancement in plasmonics by coherent control of plasmon resonances
,”
Phys. Rev. B
100
,
075427
(
2019
).
27.
R. Dhama, A. Panahpour, T. Pihlava, D. Ghindani and H. Caglayan, “
All-optical switching via coherent control of plasmon resonances
,”
Phys. Opt
. arXiv:2111.07260v1.
28.
M. O.
Scully
and
M. S.
Zubairy
,
Quantum Optics
(
Cambridge University Press
,
New York
,
1997
).
29.
M.
Fleischhauer
,
A.
Imamoglu
, and
J. P.
Marangos
, “
Electromagnetically induced transparency: Optics in coherent media
,”
Rev. Mod. Phys.
77
,
633
(
2005
).
30.
M. E.
Taşgın
,
Ö. E.
Müstecaplıoğlu
, and
M. Ö.
Oktel
, “
Photonic band gap in the triangular lattice of Bose-Einstein-condensate vortices
,”
Phys. Rev. A
75
,
063627
(
2007
).
31.
Ö. E.
Müstecapl ioğlu
and
M. Ö.
Oktel
, “
Photonic band gap via quantum coherence in vortex lattices of Bose-Einstein condensates
,”
Phys. Rev. Lett.
94
,
220404
(
2005
).
32.
I.
Zoric
,
M.
Zach
,
B.
Kasemo
, and
C.
Langhammer
, “
Gold, platinum, and aluminum nanodisk plasmons: Material independence, subradiance, and damping mechanisms
,”
ACS Nano
5
,
2535
2546
(
2011
).
33.
B. C.
Yildiz
,
A.
Bek
, and
M. E.
Tasgin
, “
Plasmon lifetime enhancement in a bright-dark mode coupled system
,”
Phys. Rev. B
101
,
035416
(
2020
).
34.
E.
Yuce
,
J.
Lian
,
S.
Sokolov
,
J.
Bertolotti
,
S.
Combrie
,
G.
Lehoucq
,
A.
De Rossi
, and
A. P.
Mosk
, “
Adaptive control of necklace states in a photonic crystal waveguide
,”
ACS Photonics
5
,
3984
3988
(
2018
).
35.
J.
Schrauwen
,
S.
Scheerlinck
,
D.
Van Thourhout
, and
R.
Baets
, “
Polymer wedge for perfectly vertical light coupling to silicon
,”
Proc. SPIE
7218
,
72180B
(
2009
).
36.
Y.
Zhang
and
B.
Li
, “
Photonic crystal-based bending waveguides for optical interconnections
,”
Opt. Express
14
,
5723
5732
(
2006
).
37.
C.
Kohler
,
F.
Zhang
, and
W.
Osten
, “
Characterization of a spatial light modulator and its application in phase retrieval
,”
Appl. Opt.
48
,
4003
4008
(
2009
).
38.
R.
Amin
,
R.
Maiti
,
J. B.
Khurgin
, and
V. J.
Sorger
, “
Performance analysis of integrated electro-optic phase modulators based on emerging materials
,”
IEEE J. Sel. Top. Quantum Electron.
27
(
3
),
3300211
(
2021
).
39.
In case of an unconfined light, one can also alternate the 3–4 layer structure along the y-direction.
40.
M. D.
Lukin
and
A.
Imamoğlu
, “
Controlling photons using electromagnetically induced transparency
,”
Nature
413
,
273
276
(
2001
).
41.
K.-J.
Boller
,
A.
Imamoğlu
, and
S. E.
Harris
, “
Observation of electromagnetically induced transparency
,”
Phys. Rev. Lett.
66
,
2593
(
1991
).
42.
B.
Luk'yanchuk
,
N. I.
Zheludev
,
S. A.
Maier
,
N. J.
Halas
,
P.
Nordlander
,
H.
Giessen
, and
C. T.
Chong
, “
The fano resonance in plasmonic nanostructures and metamaterials
,”
Nat. Mater.
9
,
707
(
2010
).
43.
M. F.
Limonov
,
M. V.
Rybin
,
A. N.
Poddubny
, and
Y. S.
Kivshar
, “
Fano resonances in photonics
,”
Nat. Photonics
11
,
543
(
2017
).
44.
B.
Peng
,
Ş.
Kaya Özdemir
,
W.
Chen
,
F.
Nori
, and
L.
Yang
, “
What is and what is not electromagnetically induced transparency in whispering-gallery microcavities
,”
Nat. Commun.
5
,
5082
(
2014
).
45.
J.
Butet
and
O. J.
Martin
, “
Fano resonances in the nonlinear optical response of coupled plasmonic nanostructures
,”
Opt. Express
22
,
29693
29707
(
2014
).
46.
S. K.
Singh
,
M. K.
Abak
, and
M. E.
Tasgin
, “
Enhancement of four-wave mixing via interference of multiple plasmonic conversion paths
,”
Phys. Rev. B
93
,
035410
(
2016
).
47.
M. E.
Taşgin
,
A.
Bek
, and
S.
Postac i
, “
Fano resonances in the linear and nonlinear plasmonic response
,” in
Fano Resonances in Optics and Microwaves
(
Springer
,
2018
), pp.
1
31
.
48.
S.
Postaci
,
B. C.
Yildiz
,
A.
Bek
, and
M. E.
Tasgin
, “
Silent enhancement of SERS signal without increasing hot spot intensities
,”
Nanophotonics
7
,
1687
1695
(
2018
).
49.
M. O.
Scully
, “
Enhancement of the index of refraction via quantum coherence
,”
Phys. Rev. Lett.
67
,
1855
(
1991
).
50.
D.
Andrews
,
T.
Nann
, and
R. H.
Lipson
,
Comprehensive Nanoscience and Nanotechnology
(
Academic Press
,
2019
).
51.
X.
Wu
,
S. K.
Gray
, and
M.
Pelton
, “
Quantum-dot-induced transparency in a nanoscale plasmonic resonator
,”
Opt. Express
18
,
23633
23645
(
2010
).
52.
A.
Lovera
,
B.
Gallinet
,
P.
Nordlander
, and
O. J.
Martin
, “
Mechanisms of Fano resonances in coupled plasmonic systems
,”
ACS Nano
7
,
4527
4536
(
2013
).
53.
M.
Günay
,
Y.-L.
Chuang
, and
M. E.
Tasgin
, “
Continuously-tunable Cherenkov-radiation-based detectors via plasmon index control
,”
Nanophotonics
9
,
1479
1489
(
2020
).
54.
M.
Fleischhauer
,
C. H.
Keitel
,
M. O.
Scully
,
C.
Su
,
B. T.
Ulrich
, and
S.-Y.
Zhu
, “
Resonantly enhanced refractive index without absorption via atomic coherence
,”
Phys. Rev. A
46
,
1468
(
1992
).
55.
C.
Sönnichsen
,
T.
Franzl
,
T.
Wilk
,
G. v.
Plessen
,
J.
Feldmann
,
O. V.
Wilson
, and
P.
Mulvaney
, “
Drastic reduction of plasmon damping in gold nanorods
,”
Phys. Rev. Lett.
88
,
077402
(
2002
).
56.
S. A.
Maier
,
P. G.
Kik
, and
H. A.
Atwater
, “
Optical pulse propagation in metal nanoparticle chain waveguides
,”
Phys. Rev. B
67
,
205402
(
2003
).

Supplementary Material

You do not currently have access to this content.