We report an experimental implementation of width-tunable neurons to train a binary neural network. The angle-dependent magnetic behavior in an oxide thin film highly mimics neurons with width-controllable activation window, providing an opportunity to train the activation functions and weights toward binary values. We apply this feature to train the MNIST dataset using a 684-800-10 fully connected network and achieve a high accuracy of 97.4%, thus opening an implementation strategy toward training neural networks.

1.
J.
Schmidhuber
,
Neural Networks
61
,
85
117
(
2015
).
2.
D.
Hassabis
,
D.
Kumaran
,
C.
Summerfield
, and
M.
Botvinick
,
Neuron
95
(
2
),
245
(
2017
).
3.
C. M.
Kim
,
K. H.
Choi
, and
Y. B.
Cho
, in
Proceedings of the International Joint Conference on Neural Networks 2003
(
IEEE
,
2003
), Vols.
1–4
, pp.
953
.
4.
M.
Courbariaux
,
I.
Hubara
,
D.
Soudry
 et al., arXiv:1602.02830 (
2016
).
5.
H.
Qin
,
R.
Gong
,
X.
Liu
,
X.
Bai
,
J.
Song
, and
N.
Sebe
,
Pattern Recognition
105
,
107281
(
2020
).
6.
R.
Gong
,
X.
Liu
,
S.
Jiang
,
T.
Li
,
P.
Hu
,
J.
Lin
,
F.
Yu
, and
J.
Yan
, in
2019 IEEE/CVF International Conference on Computer Vision (ICCV)
(
IEEE
,
2019
), p.
4851
.
7.
M.
Rastegari
,
V.
Ordonez
,
J.
Redmon
,
A.
Farhadi
, in
Computer Vision—ECCV 2016, Pt IV
, edited by
B.
Leibe
,
J.
Matas
,
N.
Sebe
 et al. (
Springer
,
2016
), Vol.
9908
, p.
525
.
8.
Z.
Wu
,
D.
Lin
,
X.
Tang
,
D.
Soudry
,
I.
Hubara
,
R.
Meir
,
Z.
Lin
,
M.
Courbariaux
,
R.
Memisevic
, and
Y.
Bengio
,
Adv. Neural Inf. Process. Syst.
2
,
963
(
2015
).
9.
T.
Simons
and
D.-J.
Lee
,
Electronics
8
(
6
),
661
(
2019
).
10.
X. F.
Lin
,
C.
Zhao
, and
W.
Pan
, in
Advances in Neural Information Processing Systems
, edited by
I.
Guyon
,
U. V.
Luxburg
,
S.
Bengio
 et al. (
MIT Press
,
2017
), Vol.
30
.
11.
S.
Zhou
,
Y.
Wu
,
Z.
Ni
,
X.
Zhou
,
H.
Wen
, and
Y.
Zou
, arXiv:1606.06160 (
2016
).
12.
P. H.
Yin
,
S.
Zhang
,
J. C.
Lyu
,
S.
Osher
,
Y. Y.
Qi
, and
J.
Xin
,
Res. Math. Sci.
6
,
14
(
2019
).
13.
Y.
Zhao
and
J.
Xiao
,
Sci. Rep.
11
,
19797
(
2021
).
14.
15.
F. L.
Lan
,
H. Y.
Chen
,
H. X.
Lin
,
Y.
Bai
,
Y.
Yu
,
T.
Miao
,
Y. Y.
Zhu
,
T. Z.
Ward
,
Z.
Gai
,
W. B.
Wang
,
L. F.
Yin
,
E. W.
Plummer
, and
J.
Shen
,
Proc. Natl. Acad. Sci. U. S. A.
116
(
10
),
4141
(
2019
).
16.
V.
Kalappattil
,
R.
Geng
,
S. H.
Liang
,
D.
Mukherjee
,
J.
Devkota
,
A.
Roy
,
M. H.
Luong
,
N. D.
Lai
,
L. A.
Hornak
, and
T. D.
Nguyen
,
J. Sci. Adv. Mater. Devices
2
(
3
),
378
384
(
2017
).
17.
J. S.
Lee
,
D. A.
Arena
,
P.
Yu
,
C. S.
Nelson
,
R.
Fan
,
C. J.
Kinane
,
S.
Langridge
,
M. D.
Rossell
,
R.
Ramesh
, and
C. C.
Kao
,
Phys. Rev. Lett.
105
(
25
),
257204
(
2010
).
18.
S.
Oh
,
Y. H.
Shi
,
J.
del Valle
,
P.
Salev
,
Y. C.
Lu
,
Z. S.
Huang
,
Y.
Kalcheim
,
I. K.
Schuller
, and
D.
Kuzum
,
Nat. Nanotechnol.
16
(
6
),
680
(
2021
).
19.
N.
Srivastava
, Master's thesis,
University of Toronto
,
2013
.
20.
N.
Srivastava
,
G.
Hinton
,
A.
Krizhevsky
,
I.
Sutskever
, and
R.
Salakhutdinov
,
J. Mach. Learn. Res.
15
,
1929
(
2014
).
21.
P. Y.
Simard
,
D.
Steinkraus
, and
J. C.
Platt
, in
Seventh International Conference on Document Analysis and Recognition
(
IEEE
,
2003
), Vols.
I and II
, p.
958
.
22.
See https://www.tensorflow.org/ for “
TensorFlow
.”
23.
T.
Nomura
,
K.
Yokoyama
, and
S.
Nakagawa
,
SMPTE Motion Imaging J. Kimoto
96
(
11
),
1062
(
1987
).
24.
T. D.
Goodman
, and
M. Appl. Opt. Mansuripur
35
(
7
),
1107
(
1996
).
25.
See
S. D.
Bader
,
J. Magn. Mater.
100
,
440
(
1991
).
26.
X.
Fan
,
H.
Celik
,
J.
Wu
 et al.,
Nat Commun
5
,
3042
(
2014
).
27.
F.
Huang
,
M. T.
Kief
, and
G. J.
Mankey
,
Phys. Rev. B
49
(
6
),
3962
(
1994
).
28.
H.
Molegraaf
,
J.
Hoffman
,
C.
Vaz
 et al.,
Adv. Mater.
21
(
34
),
3470
3474
(
2009
).
29.
Z. Q.
Qiu
and
J.
Pearson
,
Phys. Rev. Lett.
70
(
7
),
1006
(
1993
).
30.
H.
Nishikawa
,
E.
Houwman
,
H.
Boschker
,
M.
Mathews
,
D. H. A.
Blank
, and
G.
Rijnders
,
Appl. Phys. Lett.
94
(
4
),
042502
(
2009
).
31.
V. V.
Demidov
,
G. A.
Ovsyannikov
,
A. M.
Petrzhik
,
I. V.
Borisenko
,
A. V.
Shadrin
, and
R.
Gunnarsson
,
J. Appl. Phys.
113
(
16
),
163909
(
2013
).

Supplementary Material

You do not currently have access to this content.