Surface hardening by mechanical attrition at room and cryogenic temperatures has been studied on CrMnFeCoNi high- and CrCoNi medium-entropy alloys. The hardness gradient is produced by severe plastic deformation through dislocation slip and mechanical twinning, finally leading to an ultrafine or even nanocrystalline structure. The hardness of samples after surface attrition at cryogenic temperature is slightly less than that of samples deformed at room temperature. A small amount of deformation-induced martensitic transformation is only observed in a narrow surface layer of the medium-entropy alloy severely deformed under cryogenic conditions. Reasons for these observations are discussed.
References
1.
K.
Lu
and J.
Lu
, “Surface nanocrystallization (SNC) of metallic materials-presentation of the concept behind a new approach
,” J. Mater. Sci. Technol.
15
, 193
–197
(1999
).2.
K.
Lu
and J.
Lu
, “Nanostructured surface layer on metallic materials induced by surface mechanical attrition treatment
,” Mater. Sci. Eng., A
375–377
, 38
–45
(2004
).3.
T.
Grosdidier
and M.
Novelli
, “Recent developments in the application of surface mechanical attrition treatments for improved gradient structures: Processing parameters and surface reactivity
,” Mater. Trans.
60
, 1344
–1355
(2019
).4.
D.
Kumar
, S.
Idapalapati
, W.
Wang
, and S.
Narasimalu
, “Effect of surface mechanical treatments on the microstructure-property-performance of engineering alloys
,” Materials
12
, 2503
(2019
).5.
T. O.
Olugbade
and J.
Lu
, “Literature review on the mechanical properties of materials after surface mechanical attrition treatment (SMAT)
,” Nano Mater. Sci.
2
, 3
–31
(2020
).6.
R.
Wen
, C.
You
, L.
Zeng
, H.
Wang
, and X.
Zhang
, “Achieving a unique combination of strength and ductility in CrCoNi medium-entropy alloy via heterogeneous gradient structure
,” J. Mater. Sci.
55
, 12544
–12553
(2020
).7.
J.
Xie
, S.
Zhang
, Y.
Sun
, Y.
Hao
, B.
An
, Q.
Li
, and C. A.
Wang
, “Microstructure and mechanical properties of high entropy CrMnFeCoNi alloy processed by electropulsing-assisted ultrasonic surface rolling
,” Mater. Sci. Eng., A
795
, 140004
(2020
).8.
B.
Gan
, J.
Gu
, M. A.
Monclús
, X.
Dong
, Y. S.
Zhao
, H. Y.
Yu
, J. H.
Du
, M.
Song
, and Z. N.
Bi
, “Strengthening mechanisms of Ni–Co–Cr alloys via nanotwins and nanophases
,” Superalloys
2020
, 619
–628
.9.
T. A.
Listyawan
, H.
Lee
, N.
Park
, and U.
Lee
, “Microstructure and mechanical properties of CoCrFeMnNi high entropy alloy with ultrasonic nanocrystal surface modification process
,” J. Mater. Sci. Technol.
57
, 123
–130
(2020
).10.
M. N.
Hasan
, Y. F.
Liu
, X. H.
An
, J.
Gu
, M.
Song
, Y.
Cao
, Y. S.
Li
, Y. T.
Zhu
, and X. Z.
Liao
, “Simultaneously enhancing strength and ductility of a high-entropy alloy via gradient hierarchical microstructures
,” Int. J. Plast.
123
, 178
–195
(2019
).11.
L.
Guo
, W.
Wu
, S.
Ni
, Z.
Yuan
, Y.
Cao
, Z.
Wang
, and M.
Song
, “Strengthening the FeCoCrNiMo0.15 high entropy alloy by a gradient structure
,” J. Alloys Compd.
841
, 155688
(2020
).12.
M. T.
Tsai
, J. C.
Huang
, W. Y.
Tsai
, T. H.
Chou
, C. F.
Chen
, T. H.
Li
, and J. S. C.
Jang
, “Effects of ultrasonic surface mechanical attrition treatment on microstructures and mechanical properties of high entropy alloys
,” Intermetallics
93
, 113
–121
(2018
).13.
J.
Moon
, Y.
Qi
, E.
Tabachnikova
, Y.
Estrin
, W. M.
Choi
, S. H.
Joo
, B. J.
Lee
, A.
Podolskiy
, M.
Tikhonovsky
, and H. S.
Kim
, “Deformation-induced phase transformation of Co20Cr26Fe20Mn20Ni14 high-entropy alloy during high-pressure torsion at 77 K
,” Mater. Lett.
202
, 86
–88
(2017
).14.
J.
Moon
, Y.
Qi
, E.
Tabachnikova
, Y.
Estrin
, W. M.
Choi
, S. H.
Joo
, B. J.
Lee
, A.
Podolskiy
, M.
Tikhonovsky
, and H. S.
Kim
, “Microstructure and mechanical properties of high-entropy alloy Co20Cr26Fe20Mn20Ni14 processed by high-pressure torsion at 77 K and 300 K
,” Sci. Rep.
8
, 11074
(2018
).15.
W.
Skrotzki
, A.
Pukenas
, E.
Odor
, B.
Joni
, T.
Ungar
, B.
Völker
, A.
Hohenwarter
, R.
Pippan
, and E. P.
George
, “Microstructure, texture, and strength development during high-pressure torsion of CrMnFeCoNi high-entropy alloy
,” Crystals
10
, 336
(2020
).16.
M.
Novelli
, J. J.
Fundenberger
, P.
Bocher
, and T.
Grosdidier
, “On the effectiveness of surface severe plastic deformation by shot peening at cryogenic temperature
,” Appl. Surf. Sci.
389
, 1169
–1174
(2016
).17.
X.
Wu
, N.
Tao
, Y.
Hong
, G.
Liu
, B.
Xu
, J.
Lu
, and K.
Lu
, “Strain-induced grain refinement of cobalt during surface mechanical attrition treatment
,” Acta Mater.
53
, 681
–691
(2005
).18.
X.
Wu
, N.
Tao
, Y.
Hong
, J.
Lu
, and K.
Lu
, “Γ → Ε martensite transformation and twinning deformation in FCC cobalt during surface mechanical attrition treatment
,” Scr. Mater.
52
, 547
–551
(2005
).19.
P.
Maurel
, L.
Weiss
, P.
Bocher
, and T.
Grosdidier
, “Effects of SMAT at cryogenic and room temperatures on the kink band and martensite formations with associated fatigue resistance in a β-metastable titanium alloy
,” Mater. Sci. Eng., A
803
, 140618
(2020
).20.
R.
Pippan
, F.
Wetscher
, M.
Hafok
, A.
Vorhauer
, and I.
Sabirov
, “The limits of refinement by severe plastic deformation
,” Adv. Eng. Mater.
8
, 1046
–1056
(2006
).21.
K.
Edalati
, J. M.
Cubero-Sesin
, A.
Alhamidi
, I. F.
Mohamed
, and Z.
Horita
, “Influence of severe plastic deformation at cryogenic temperature on grain refinement and softening of pure metals: Investigation using high-pressure torsion
,” Mater. Sci. Eng., A
613
, 103
–110
(2014
).22.
P. M.
Kelly
, “The martensite transformation in steels with low stacking fault energy
,” Acta Metall.
13
, 635
–646
(1965
).23.
S.
Huang
, W.
Li
, S.
Lu
, F.
Tian
, J.
Shen
, E.
Holmström
, and L.
Vitos
, “Temperature dependent stacking fault energy of FeCrCoNiMn high entropy alloy
,” Scr. Mater.
108
, 44
–47
(2015
).24.
S.
Lu
, X.
Sun
, X.
An
, W.
Li
, Y.
Chen
, H.
Zhang
, and L.
Vitos
, “Theory of transformation-mediated twinning
,” preprint arXiv:1910.1174 (2019
).25.
M.
Novelli
, P.
Bocher
, and T.
Grosdidier
, “Effect of cryogenic temperatures and processing parameters on gradient-structure of a stainless steel treated by ultrasonic surface mechanical attrition treatment
,” Mater. Charact.
139
, 197
–207
(2018
).26.
G.
Laplanche
, A.
Kostka
, C.
Reinhart
, J.
Hunfeld
, G.
Eggeler
, and E. P.
George
, “Reasons for the superior mechanical properties of medium-entropy CrCoNi compared to high-entropy CrMnFeCoNi
,” Acta Mater.
128
, 292
–303
(2017
).27.
N. L.
Okamoto
, S.
Fujimoto
, Y.
Kambara
, M.
Kawamura
, Z. M. T.
Chen
, H.
Matsunoshita
, K.
Tanaka
, H.
Inui
, and E. P.
George
, “Size effect, critical resolved shear stress, stacking fault energy, and solid solution strengthening in the CrMnFeCoNi high-entropy alloy
,” Sci. Rep.
6
, 35863
(2016
).28.
A.
Gali
and E. P.
George
, “Tensile properties of high- and medium-entropy alloys
,” Intermetallics
39
, 74
–78
(2013
).29.
S.
Rouquette
, E.
Rouhaud
, M.
François
, A.
Roos
, and J. L.
Chaboche
, “Coupled thermo-mechanical simulations of shot impacts: Effects of the temperature on the residual stress field due to shot-peening
,” J. Mater. Process. Technol.
209
, 3879
–3886
(2009
).30.
H.
Sato
, A.
Namba
, M.
Okada
, and Y.
Watanabe
, “Temperature dependence of reverse transformation induced by shot-peening for SUS 304 austenitic stainless steel
,” Mater Today Proc.
2
, S707
–S710
(2015
).31.
B.
Beausir
and J.-J.
Fundenberger
, Analysis Tools for Electron and X-ray diffraction, ATEX - software, www.atex-software.eu, Université de Lorraine - Metz
, 2017
.32.
R.
Chulist
, L.
Straka
, H.
Seiner
, A.
Sozinov
, N.
Schell
, and T.
Tokarski
, “Branching of {110} twin boundaries in five-layered Ni-Mn-Ga bent single crystals
,” Mater. Des.
171
, 107703
(2019
).33.
K.
Lu
and N.
Hansen
, “Structural refinement and deformation mechanisms in nanostructured metals
,” Scr. Mater.
60
, 1033
–1038
(2009
).34.
Y.
Samih
, B.
Beausir
, B.
Bolle
, and T.
Grosdidier
, “In-depth quantitative analysis of the microstructures produced by surface mechanical attrition treatment (SMAT)
,” Mater. Charact.
83
, 129
–138
(2013
).35.
J.
Azadmanjiri
, C. C.
Berndt
, A.
Kapoor
, and C.
Wen
, “Development of surface nano-crystallization in alloys by surface mechanical attrition treatment (SMAT)
,” Crit. Rev. Solid State Mater. Sci.
40
, 164
–181
(2015
).36.
K. A.
Darling
, M. A.
Tschopp
, A. J.
Roberts
, J. P.
Ligda
, and L. J.
Kecskes
, “Enhancing grain refinement in polycrystalline materials using surface mechanical attrition treatment at cryogenic temperatures
,” Scr. Mater.
69
, 461
–464
(2013
).37.
A. Y.
Chen
, H. H.
Ruan
, J.
Wang
, H. L.
Chan
, Q.
Wang
, Q.
Li
, and J.
Lu
, “The influence of strain rate on the microstructure transition of 304 stainless steel
,” Acta Mater.
59
, 3697
–3709
(2011
).38.
C.
Xin
, D.
Yang
, Q.
Sun
, L.
Xiao
, and J.
Sun
, “Thermal stability of nanogradient microstructure produced by surface mechanical rolling treatment in Zircaloy-4
,” J. Mater. Sci.
55
, 4926
–4939
(2020
).39.
N. R.
Tao
and K.
Lu
, “Nanoscale structural refinement via deformation twinning in face-centered cubic metals
,” Scr. Mater.
60
, 1039
–1043
(2009
).40.
A. S.
Tirunilai
, T.
Hanemann
, C.
Reinhart
, V.
Tschan
, K. P.
Weiss
, G.
Laplanche
, J.
Freudenberger
, M.
Heilmaier
, and A.
Kauffmann
, “Comparison of cryogenic deformation of the concentrated solid solutions CoCrFeMnNi, CoCrNi and CoNi
,” Mater. Sci. Eng., A
783
, 139290
(2020
).41.
S.
Alikhani Chamgordani
, R.
Miresmaeili
, and M.
Aliofkhazraei
, “Improvement in tribological behavior of commercial pure titanium (CP-Ti) by surface mechanical attrition treatment (SMAT)
,” Tribol. Int.
119
, 744
–752
(2018
).42.
B.
Arifvianto
, Suyitno
, M.
Mahardika
, P.
Dewo
, P. T.
Iswanto
, and U. A.
Salim
, “Effect of surface mechanical attrition treatment (SMAT) on microhardness, surface roughness and wettability of AISI 316L
,” Mater. Chem. Phys.
125
, 418
–426
(2011
).43.
E. W.
Huang
, C. M.
Lin
, J. Y.
Juang
, Y. J.
Chang
, Y. W.
Chang
, C. S.
Wu
, C. W.
Tsai
, A. C.
Yeh
, S. R.
Shieh
, C. P.
Wang
, Y. C.
Chuang
, Y. F.
Liao
, D.
Zhang
, T.
Huang
, T. N.
Lam
, and Y. H.
Chen
, “Deviatoric deformation kinetics in high entropy alloy under hydrostatic compression
,” J. Alloys Compd.
792
, 116
–121
(2019
).44.
Z.
Li
, K. G.
Pradeep
, Y.
Deng
, D.
Raabe
, and C. C.
Tasan
, “Metastable high-entropy dual-phase alloys overcome the strength-ductility trade-off
,” Nature
534
, 227
–230
(2016
).45.
H. W.
Zhang
, Z. K.
Hei
, G.
Liu
, J.
Lu
, and K.
Lu
, “Formation of nanostructured surface layer on AISI 304 stainless steel by means of surface mechanical attrition treatment
,” Acta Mater.
51
, 1871
–1881
(2003
).46.
J.
Miao
, C. E.
Slone
, T. M.
Smith
, C.
Niu
, H.
Bei
, M.
Ghazisaeidi
, G. M.
Pharr
, and M. J.
Mills
, “The evolution of the deformation substructure in a Ni-Co-Cr equiatomic solid solution alloy
,” Acta Mater.
132
, 35
–48
(2017
).47.
C. E.
Slone
, S.
Chakraborty
, J.
Miao
, E. P.
George
, M. J.
Mills
, and S. R.
Niezgoda
, “Influence of deformation induced nanoscale twinning and FCC-HCP transformation on hardening and texture development in medium-entropy CrCoNi alloy
,” Acta Mater.
158
, 38
–52
(2018
).48.
Y.
Ma
, F.
Yuan
, M.
Yang
, P.
Jiang
, E.
Ma
, and X.
Wu
, “Dynamic shear deformation of a CrCoNi medium-entropy alloy with heterogeneous grain structures
,” Acta Mater.
148
, 407
–418
(2018
).49.
E. W.
Huang
, C. M.
Lin
, J.
Jain
, S. R.
Shieh
, C. P.
Wang
, Y. C.
Chuang
, Y. F.
Liao
, D. Z.
Zhang
, T.
Huang
, T. N.
Lam
, W.
Woo
, and S. Y.
Lee
, “Irreversible phase transformation in a CoCrFeMnNi high entropy alloy under hydrostatic compression
,” Mater. Today Commun.
14
, 10
–14
(2018
).© 2021 Author(s). Published under an exclusive license by AIP Publishing.
2021
Author(s)
You do not currently have access to this content.