In the last decade, several works have focused on exploring the material and electrical properties of GeTe/Sb2Te3 superlattices (SLs), in particular because of some first device implementations demonstrating interesting performances such as fast switching speed, low energy consumption, and non-volatility. However, the switching mechanism in such SL-based devices remains under debate. In this work, we investigate the prototype GeTe/Sb2Te3 SLs to analyze fundamentally their electronic and thermal properties by ab initio methods. We find that the resistive contrast is small among the different phases of GeTe/Sb2Te3 because of a small electronic gap (about 0.1 eV) and a consequent semi-metallic-like behavior. At the same time, the out-of-plane lattice thermal conductivity is rather small, while varying up to four times among the different phases, from 0.11 to 0.45 W m−1 K−1, intimately related to the number of Van der Waals (VdW) gaps in a unit block. Such findings confirm the importance of the thermal improvement achievable in GeTe/Sb2Te3 superlattices devices, highlighting the impact of the material stacking and the role of VdW gaps on the thermal engineering of the phase-change memory cell.

1.
H.-Y.
Cheng
,
F.
Carta
,
W.-C.
Chien
,
H.-L.
Lung
, and
M. J.
BrightSky
,
J. Phys. D: Appl. Phys.
52
,
473002
(
2019
).
2.
P.
Cappelletti
,
R.
Annunziata
,
F.
Arnaud
,
F.
Disegni
,
A.
Maurelli
, and
P.
Zuliani
,
J. Phys. D: Appl. Phys.
53
,
193002
(
2020
).
3.
W.-X.
Song
,
Y.
Cheng
,
D.
Cai
,
Q.
Tang
,
Z.
Song
,
L.
Wang
,
J.
Zhao
,
T.
Xin
, and
Z.-P.
Liu
,
J. Appl. Phys.
128
,
075101
(
2020
).
4.
A.
Kusiak
,
J.-L.
Battaglia
,
P.
Noé
,
V.
Sousa
, and
F.
Fillot
,
J. Phys.: Conf. Ser.
745
,
032104
(
2016
).
5.
R. E.
Simpson
,
P.
Fons
,
A. V.
Kolobov
,
T.
Fukaya
,
M.
Krbal
,
T.
Yagi
, and
J.
Tominaga
,
Nat. Nanotechnol.
6
,
501
505
(
2011
).
6.
X.
Yu
and
J.
Robertson
,
Sci. Rep.
5
,
12612
(
2015
).
7.
K. V.
Mitrofanov
,
Y.
Saito
,
N.
Miyata
,
P.
Fons
,
A. V.
Kolobov
, and
J.
Tominaga
,
Phys. Status Solidi RRL
13
,
1900105
(
2019
).
8.
A. V.
Kolobov
,
P.
Fons
,
Y.
Saito
, and
J.
Tominaga
,
ACS Omega
2
,
6223
(
2017
).
9.
P.
Kowalczyk
,
F.
Hippert
,
N.
Bernier
,
C.
Mocuta
,
C.
Sabbione
,
W.
Batista-Pessoa
, and
P.
Noé
,
Small
14
,
1704514
(
2018
).
10.
N.-K.
Chen
,
X.-B.
Li
,
X.-P.
Wang
,
S.-Y.
Xie
,
W. Q.
Tian
,
S.
Zhang
, and
H.-B.
Sun
,
IEEE Trans. Nanotechnol.
17
,
140
146
(
2018
).
11.
Y.
Saito
,
A. V.
Kolobov
,
P.
Fons
,
K. V.
Mitrofanov
,
K.
Makino
,
J.
Tominaga
, and
J.
Robertson
,
Appl. Phys. Lett.
114
,
132102
(
2019
).
12.
T. C.
Chong
,
L. P.
Shi
,
R.
Zhao
,
P. K.
Tan
,
J. M.
Li
,
H. K.
Lee
,
X. S.
Miao
,
A. Y.
Du
, and
C. H.
Tung
,
Appl. Phys. Lett.
88
,
122114
(
2006
).
13.
H.
Tong
,
X. S.
Miao
,
X. M.
Cheng
,
H.
Wang
,
L.
Zhang
,
J. J.
Sun
,
F.
Tong
, and
J. H.
Wang
,
Appl. Phys. Lett.
98
,
101904
(
2011
).
14.
P.
Long
,
H.
Tong
, and
X.
Miao
,
Appl. Phys. Express
5
,
031201
(
2012
).
15.
D.
Campi
,
L.
Paulatto
,
G.
Fugallo
,
F.
Mauri
, and
M.
Bernasconi
,
Phys. Rev. B
95
,
024311
(
2017
).
16.
G.
Navarro
,
G.
Bourgeois
,
J.
Kluge
,
A. L.
Serra
,
A.
Verdy
,
J.
Garrione
,
M.-C.
Cyrille
,
N.
Bernier
,
A.
Jannaud
,
C.
Sabbione
 et al, in
2018 IEEE International Memory Workshop (IMW)
(
IEEE
,
2018
), p.
1
4
.
17.
M.
Boniardi
,
J. E.
Boschker
,
J.
Momand
,
B. J.
Kooi
,
A.
Redaelli
, and
R.
Calarco
,
Phys. Status Solidi (RRL)
13
,
1800634
(
2019
).
18.
D.
Térébénec
,
N.
Castellani
,
N.
Bernier
,
V.
Sever
,
P.
Kowalczyk
,
M.
Bernard
,
M.-C.
Cyrille
,
N.-P.
Tran
,
F.
Hippert
, and
P.
Noé
,
Phys. Status Solidi RRL
15
,
2000538
(
2021
).
19.
H.
Kwon
,
A. I.
Khan
,
C.
Perez
,
M.
Asheghi
,
E.
Pop
, and
K. E.
Goodson
,
Nano Lett.
21
,
5984
5990
(
2021
).
20.
A. I.
Khan
,
A.
Daus
,
R.
Islam
,
K. M.
Neilson
,
H. R.
Lee
,
H.-S. P.
Wong
, and
E.
Pop
,
Science
373
,
1243
1247
(
2021
).
21.
B. J.
Kooi
and
J. T. M.
De Hosson
,
J. Appl. Phys.
92
,
3584
3590
(
2002
).
22.
S.
Grimme
,
J.
Antony
,
S.
Ehrlich
, and
H.
Krieg
,
J. Chem. Phys.
132
,
154104
(
2010
).
23.
Y.-S.
Song
,
J.
Kim
, and
S.-H.
Jhi
,
Phys. Rev. Appl.
9
,
054044
(
2018
).
24.
S.
Grimme
,
J. Comput. Chem.
27
,
1787
(
2006
).
25.
J.
Heyd
,
G. E.
Scuseria
, and
M.
Ernzerhof
,
J. Chem. Phys.
118
,
8207
(
2003
).
26.
G.
Pizzi
,
V.
Vitale
,
R.
Arita
,
S.
Blügel
,
F.
Freimuth
,
G.
Géranton
,
M.
Gibertini
,
D.
Gresch
,
C.
Johnson
,
T.
Koretsune
 et al,
J. Phys.: Condens. Matter
32
,
165902
(
2020
).
27.
A.
Dragoni
,
B.
Sklénard
,
V.
Olevano
, and
F.
Triozon
,
Phys. Rev. B
101
,
075402
(
2020
).
28.
A.
Togo
,
L.
Chaput
, and
I.
Tanaka
,
Phys. Rev. B
91
,
094306
(
2015
).
29.
G.
Kresse
and
J.
Furthmüller
,
Phys. Rev. B
54
,
11169
11186
(
1996
).
30.
G.
Kresse
and
D.
Joubert
,
Phys. Rev. B
59
,
1758
1775
(
1999
).
31.
T.
Matsunaga
,
N.
Yamada
, and
Y.
Kubota
,
Acta Crystallogr., Sect. B
60
,
685
691
(
2004
).
32.
J.-W.
Park
,
S. H.
Eom
,
H.
Lee
,
J. L. F.
Da Silva
,
Y.-S.
Kang
,
T.-Y.
Lee
, and
Y. H.
Khang
,
Phys. Rev. B
80
,
115209
(
2009
).
33.
J.
Lee
,
E.
Bozorg-Grayeli
,
S.
Kim
,
M.
Asheghi
,
H.-S.
Philip Wong
, and
K. E.
Goodson
,
Appl. Phys. Lett.
102
,
191911
(
2013
).
34.
H.-K.
Lyeo
,
D. G.
Cahill
,
B.-S.
Lee
,
J. R.
Abelson
,
M.-H.
Kwon
,
K.-B.
Kim
,
S. G.
Bishop
, and
B.—k.
Cheong
,
Appl. Phys. Lett.
89
,
151904
(
2006
).
35.
J.
Tominaga
,
A. V.
Kolobov
,
P.
Fons
,
T.
Nakano
, and
S.
Murakami
,
Adv. Mater. Interfaces
1
,
1300027
(
2014
).
36.
W.
Chen
,
G.
Miceli
,
G.-M.
Rignanese
, and
A.
Pasquarello
,
Phys. Rev. Mater.
2
,
073803
(
2018
).
37.
B.-S.
Lee
,
J. R.
Abelson
,
S. G.
Bishop
,
D.-H.
Kang
,
B.-k.
Cheong
, and
K.-B.
Kim
,
J. Appl. Phys.
97
,
093509
(
2005
).
38.
N.
Takaura
,
T.
Ohyanagi
,
M.
Tai
,
M.
Kinoshita
,
K.
Akita
,
T.
Morikawa
,
H.
Shirakawa
,
M.
Araidai
,
K.
Shiraishi
,
Y.
Saito
, and
J.
Tominaga
, in
2014 IEEE International Electron Devices Meeting
(
IEEE
,
2014
), pp.
29.2.1
29.2.4
.
39.
H.
Nakamura
,
I.
Rungger
,
S.
Sanvito
,
N.
Inoue
,
J.
Tominaga
, and
Y.
Asai
,
Nanoscale
9
,
9386
9395
(
2017
).
40.
S.
Mukhopadhyay
,
L.
Lindsay
, and
D. J.
Singh
,
Sci. Rep.
6
,
37076
(
2016
).

Supplementary Material

You do not currently have access to this content.