Traditional alloy design depends heavily on “trial and error” experiments, which are neither cost-effective nor efficient, particularly for the development of high-entropy alloys (HEAs) using a broad composition space. Herein, we combine a machine learning (ML) model with phase diagram calculations (CALPHAD) to design Ti-Zr-Nb-Ta refractory HEAs with a desirable hardness. The extreme gradient boosting (XGBoost) algorithm is used to train the ML model based on the Ti-Zr-Nb-Ta HEA hardness dataset from CALPHAD-assisted experiments. As a result, the most important features (i.e., the Ta content, melting point, and entropy of mixing) are determined via feature selection and model optimization. Moreover, the high performance of the ML model is validated experimentally, and the prediction accuracy reaches 97.8%. This work provides not only an interpretable ML model that can be used to predict the hardness of Ti-Zr-Nb-Ta HEAs but also feasible guidance for the development of HEAs with desirable hardness.

1.
B.
Cantor
,
I. T. H.
Chang
,
P.
Knight
, and
A. J. B.
Vincent
,
Mater. Sci. Eng.
375–377
,
213
(
2004
).
2.
J. W.
Yeh
,
S. K.
Chen
,
S. J.
Lin
,
J. Y.
Gan
,
T. S.
Chin
,
T. T.
Shun
,
C. H.
Tsau
, and
S. Y.
Chang
,
Adv. Eng. Mater.
6
(
5
),
299
(
2004
).
3.
D. B.
Miracle
and
O. N.
Senkov
,
Acta Mater.
122
,
448
(
2017
).
4.
O. N.
Senkov
,
J. M.
Scott
,
S. V.
Senkova
,
D. B.
Miracle
, and
C. F.
Woodward
,
J. Alloy Compd.
509
(
20
),
6043
(
2011
).
5.
O. N.
Senkov
,
G. B.
Wilks
,
J. M.
Scott
, and
D. B.
Miracle
,
Intermetallics
19
(
5
),
698
(
2011
).
6.
C. C.
Juan
,
M. H.
Tsai
,
C. W.
Tsai
,
C. M.
Lin
,
W. R.
Wang
,
C. C.
Yang
,
S. K.
Chen
,
S. J.
Lin
, and
J. W.
Yeh
,
Intermetallics
62
,
76
(
2015
).
7.
A.
Amar
,
J. F.
Li
,
S.
Xiang
,
X.
Liu
,
Y. Z.
Zhou
,
G. M.
Le
,
X. Y.
Wang
,
F. S.
Qu
,
S. Y.
Ma
,
W. M.
Dong
, and
Q.
Li
,
Intermetallics
109
,
162
(
2019
).
8.
C. M.
Lin
,
C. C.
Juan
,
C. H.
Chang
,
C. W.
Tsai
, and
J. W.
Yeh
,
J. Alloy Compd.
624
(
5
),
100
(
2015
).
9.
O. N.
Senkov
,
J. K.
Jensen
,
A. L.
Pilchak
,
D. B.
Miracle
, and
H. L.
Fraser
,
Mater. Des.
139
,
498
(
2018
).
10.
N. N.
Guo
,
L.
Wang
,
L. S.
Luo
,
X. Z.
Li
,
R. R.
Chen
,
Y. Q.
Su
,
J. J.
Guo
, and
H. Z.
Fu
,
J. Alloy Compd.
660
,
197
(
2016
).
11.
C. L.
Chen
and
Sutrisna
,
Coatings
11
(
3
),
265
(
2021
).
12.
N.
Malatji
,
T.
Lengopeng
,
S.
Pityana
, and
A. P. I.
Popoola
,
Int. J. Adv. Manuf. Technol.
111
(
7–8
),
2021
(
2020
).
13.
J.
Sure
,
D. S. M.
Vishnu
, and
C.
Schwandt
,
JOM
72
(
11
),
3895
(
2020
).
14.
S. P.
Si
,
B. J.
Fan
,
X. W.
Liu
,
T.
Zhou
,
C.
He
,
D. D.
Song
, and
J. X.
Liu
,
Mater. Des.
206
(
7
),
109777
(
2021
).
15.
K. R.
Müller
,
S.
Mika
,
G.
Rätsch
,
K.
Tsuda
, and
B.
Schölkopf
,
IEEE Trans. Neural Network
12
(
2
),
181
(
2001
).
16.
C.
Andrieu
,
N. D.
Freitas
,
A.
Doucet
, and
M. I.
Jordan
,
Mach. Learn.
50
,
5
(
2003
).
17.
S. Y.
Lee
,
S.
Byeon
,
H. S.
Kim
,
H.
Jiny
, and
S.
Leey
,
Mater. Des.
197
,
109260
(
2021
).
18.
D. B.
Dai
,
T.
Xu
,
X.
Wei
,
G. T.
Ding
,
Y.
Xu
,
J. C.
Zhang
, and
H. R.
Zhang
,
Comp. Mater. Sci.
175
,
109618
(
2020
).
19.
S.
Feng
,
H. D.
Fu
,
H. Y.
Zhou
,
Y.
Wu
,
Z. P.
Lu
, and
H. B.
Dong
,
npj Comput. Mater.
7
,
10
(
2021
).
20.
Z. J.
Qin
,
Z.
Wang
,
Y. Q.
Wang
,
L. N.
Zhang
,
W. F.
Li
,
J.
Liu
,
Z. X.
Wang
,
Z. H.
Li
,
J.
Pan
,
L.
Zhao
,
F.
Liu
,
L. M.
Tan
,
J. X.
Wang
,
H.
Han
,
L.
Jiang
, and
Y.
Liu
,
Mater. Res. Lett.
9
(
1
),
32
(
2021
).
21.
Q. F.
Wu
,
Z. J.
Wang
,
X. B.
Hu
,
T.
Zheng
,
Z. S.
Yang
,
F.
He
,
J. J.
Li
, and
J. C.
Wang
,
Acta Mater.
182
,
278
(
2020
).
22.
Y. J.
Chang
,
C. Y.
Jui
,
W. J.
Lee
, and
A. C.
Yeh
,
JOM
71
(
10
),
3433
(
2019
).
23.
Z. C.
Lu
,
X.
Chen
,
X. J.
Liu
,
D. Y.
Lin
,
Y.
Wu
,
Y. B.
Zhang
,
H.
Wang
,
S. H.
Jiang
,
H. X.
Li
,
X. Z.
Wang
, and
Z. P.
Lu
,
npj Comput. Mater.
6
,
187
(
2020
).
24.
H. X.
Li
,
Z. C.
Lu
,
S. L.
Wang
,
Y.
Wu
, and
Z. P.
Lu
,
Prog. Mater. Sci.
103
,
235
(
2019
).
25.
A.
Marani
and
M. L.
Nehdi
,
Constr. Build. Mater.
265
,
120286
(
2020
).
26.
R. X.
Wang
,
Y.
Tang
,
S.
Li
,
H.
Zhang
,
Y. C.
Ye
,
L. A.
Zhu
,
Y. L.
Ai
, and
S. X.
Bai
,
Mater. Des.
162
,
256
(
2019
).
27.
R.
Jha
,
N.
Chakraborti
,
D. R.
Diercks
,
A. P.
Stebner
, and
C. V.
Ciobanu
,
Comp. Mater. Sci.
150
,
202
(
2018
).
28.
Z. F.
Zhang
,
Y. M.
Huang
,
R.
Qin
,
W. J.
Ren
, and
G. R.
Wen
,
J. Manuf. Process.
64
,
30
(
2021
).
29.
S. G.
Yang
,
J.
Lu
,
F. Z.
Xing
,
L. J.
Zhang
, and
Y.
Zhong
,
Acta Mater.
192
,
11
(
2020
).
30.
G. B.
Huang
,
Q. Y.
Zhu
, and
C. K.
Siew
,
Neurocomputing
70
,
489
(
2006
).
31.
H. T.
Zhang
,
H. D.
Fu
,
X. Q.
He
,
C. S.
Wang
,
L.
Jiang
,
L. Q.
Chen
, and
J. X.
Xie
,
Acta Mater.
200
,
803
(
2020
).
32.
J.
Bergstra
and
Y.
Bengio
,
J. Mach. Learn. Res.
13
,
281
(
2012
).
33.
H. T.
Zheng
,
J. B.
Yuan
, and
L.
Chen
,
Energies
10
,
1168
(
2017
).
34.
C. H.
Li
,
J. L.
Hoe
, and
P.
Wu
,
J. Phys. Chem. Solids
64
(
2
),
201
(
2003
).
35.
M. H.
Tsai
and
J. W.
Yeh
,
Mater. Res. Lett.
2
,
107
(
2014
).
36.
C.
Wen
,
C. X.
Wang
,
Y.
Zhang
,
S.
Antonov
,
D. Z.
Xue
,
T.
Lookman
, and
Y. J.
Su
,
Acta Mater.
212
,
116917
(
2021
).

Supplementary Material

You do not currently have access to this content.