Bulk large-gradient nanostructured NiCoCrFe high-entropy alloys with millimeter-scale gradient layer were prepared by supersonic Taylor impact. The microstructure evolution over a wide range of strain rates (10−3–105/s) was characterized, and the formation mechanism of nanocrystals with well-defined boundaries at high strain rate (>104/s) was identified to be the emerging, thickening, and mutual intersection of lattice rotation bands, high-density dislocation bands, and deformation twins. This Letter not only reveals the deformation mechanisms of high entropy alloys under a wide range of strain rates but also provides an idea that could be applied to the preparation of bulk gradient nanostructured materials.
References
1.
K.
Lu
, Science
345
(6203
), 1455
(2014
).2.
T. H.
Fang
, W. L.
Li
, N. R.
Tao
, and K.
Lu
, Science
331
, 1587
(2011
).3.
R.
Thevamaran
, O.
Lawal
, S.
Yazdi
, S. J.
Jeon
, J. H.
Lee
, and E. L.
Thomas
, Science
354
(6310
), 312
(2016
).4.
Z.
Cheng
, H.
Zhou
, Q.
Lu
, H.
Gao
, and L.
Lu
, Science
362
(6414
), eaau1925
(2018
).5.
Y. S.
Li
, N. R.
Tao
, and K.
Lu
, Acta Mater.
56
(2
), 230
(2008
).6.
F.
Dalla Torre
, R.
Lapovok
, J.
Sandlin
, P. F.
Thomson
, C. H. J.
Davies
, and E. V.
Pereloma
, Acta Mater.
52
(16
), 4819
(2004
).7.
T.
Sakai
, A.
Belyakov
, R.
Kaibyshev
, H.
Miura
, and J. J.
Jonas
, Prog. Mater. Sci.
60
, 130
(2014
).8.
M. A.
Meyers
, V. F.
Nesterenko
, J. C.
LaSalvia
, and Q.
Xue
, Mater. Sci. Eng., A
317
, 204
(2001
).9.
D.
Rittel
, P.
Landau
, and A.
Venkert
, Phys. Rev. Lett.
101
(16
), 165501
(2008
).10.
Y. B.
Xu
, H. J.
Yang
, and M. A.
Meyers
, Scr. Mater.
58
(8
), 691
(2008
).11.
Q.
Xue
, X. Z.
Liao
, Y. T.
Zhu
, and G. T.
Gray
, Mater. Sci. Eng., A
410–411
, 252
(2005
).12.
D.
Rittel
, Z. G.
Wang
, and M.
Merzer
, Phys. Rev. Lett.
96
(7
), 075502
(2006
).13.
Y. Z.
Guo
, Q. C.
Ruan
, S. X.
Zhu
, Q.
Wei
, H. S.
Chen
, J. N.
Lu
, B.
Hu
, X. H.
Wu
, Y. L.
Li
, and D. N.
Fang
, Phys. Rev. Lett.
122
(1
), 015503
(2019
).14.
D.
Rittel
, Z. G.
Wang
, and A.
Dorogoy
, Int. J. Impact Eng.
35
(11
), 1280
(2008
).15.
V.
Lemiale
, Y.
Estrin
, H. S.
Kim
, and R.
O'Donnell
, Comp. Mater. Sci.
48
(1
), 124
(2010
).16.
Y.
Ma
, F. P.
Yuan
, M. X.
Yang
, P.
Jiang
, E.
Ma
, and X. L.
Wu
, Acta Mater.
148
, 407
(2018
).17.
Z.
Li
, S.
Zhao
, H.
Diao
, P. K.
Liaw
, and M. A.
Meyers
, Sci. Rep.
7
, 42742
(2017
).18.
Z. Z.
Li
, S. T.
Zhao
, S. M.
Alotaibi
, Y.
Liu
, B. F.
Wang
, and M. A.
Meyers
, Acta Mater.
151
, 424
(2018
).19.
T. W.
Zhang
, S. G.
Ma
, D.
Zhao
, Y. C.
Wu
, Y.
Zhang
, Z. H.
Wang
, and J. W.
Qiao
, Int. J. Plast.
124
, 226
(2020
).20.
G.
Laplanche
, A.
Kostka
, O. M.
Horst
, G.
Eggeler
, and E. P.
George
, Acta Mater.
118
, 152
(2016
).21.
X. K.
Xiao
, Z. C.
Mu
, H.
Pan
, and Y. S.
Lou
, Int. J. Impact Eng.
120
, 185
(2018
).22.
N.
Yan
, Z. Z.
Li
, Y. B.
Xu
, and M. A.
Meyers
, Prog. Mater. Sci.
119
, 100755
(2021
).23.
N.
Li
, Y. D.
Wang
, R. L.
Peng
, X.
Sun
, P. K.
Liaw
, G. L.
Wu
, L.
Wang
, and H. N.
Cai
, Acta Mater.
59
(16
), 6369
(2011
).24.
W. H.
Liu
, Y.
Tong
, S. W.
Chen
, W. W.
Xu
, H. H.
Wu
, Y. L.
Zhao
, T.
Yang
, X. L.
Wang
, X. J.
Liu
, J. J.
Kai
, and C. T.
Liu
, Matter
2
(3
), 751
(2020
).25.
L. S.
Tóth
, Y.
Estrin
, R.
Lapovok
, and C. F.
Gu
, Acta Mater.
58
(5
), 1782
(2010
).26.
B. L.
Li
, A.
Godfrey
, and Q.
Liu
, Scr. Mater.
50
(6
), 879
(2004
).27.
D. P.
Field
, P. B.
Trivedi
, S. I.
Wright
, and M.
Kumar
, Ultramicroscopy
103
(1
), 33
(2005
).28.
Y. B.
Xu
, J. H.
Zhang
, Y. L.
Bai
, and M. A.
Meyers
, Metall. Mater. Trans. A
39
(4
), 811
(2008
).29.
S.
Zhao
, Z.
Li
, C.
Zhou
, W.
Yang
, Z.
Zhang
, D. E. J.
Armstrong
, P. S.
Grant
, R. O.
Ritchie
, and M. A.
Meyers
, Sci. Adv.
7
, eabb3108
(2021
).30.
W.
Wu
, M.
Song
, S.
Ni
, J.
Wang
, Y.
Liu
, B.
Liu
, and X.
Liao
, Sci. Rep.
7
, 46720
(2017
).31.
C.
Saldana
, T. G.
Murthy
, M. R.
Shankar
, E. A.
Stach
, and S.
Chandrasekar
, Appl. Phys. Lett.
94
(2
), 021910
(2009
).© 2021 Author(s). Published under an exclusive license by AIP Publishing.
2021
Author(s)
You do not currently have access to this content.