The past six years have witnessed the rapid growth of interest in Dion–Jacobson (DJ) phase two-dimensional (2D) hybrid halide perovskites as optoelectronic materials with considerable intrinsic stability. The precise relationships between structural variations and the resulting charge carrier dynamics at finite temperature in these materials are keys to practical applications and are not yet completely understood. Here, we study 3-(aminomethyl) piperidinium (3AMP) and 4-(aminomethyl) piperidinium (4AMP) spacer cation-based lead iodide DJ phase systems and find these spacer cations to have a profound impact on the structural dynamics. Particularly, large conformational dynamics of the 3AMP-based perovskite compared to that of the 4AMP at room temperature leads to pronounced state energy fluctuation near band edges and further results in a shorter quantum coherence. The faster quantum decoherence of the 3AMP spacer-based perovskite underpins a longer nonradiative lifetime, offering insight into its superior performance as an optoelectronic material. This work sheds light on the relationship between structural fluctuations and charge carrier dynamics that can help in designing 2D perovskites with superior photophysical properties.

1.
M.
Jošt
,
E.
Köhnen
,
A. B.
Morales-Vilches
,
B.
Lipovšek
,
K.
Jäger
,
B.
Macco
,
A.
Al-Ashouri
,
J.
Krč
,
L.
Korte
, and
B.
Rech
, “
Textured interfaces in monolithic perovskite/silicon tandem solar cells: Advanced light management for improved efficiency and energy yield
,”
Energy Environ. Sci.
11
(
12
),
3511
3523
(
2018
).
2.
National Renewable Energy
Laboratory, see
https://www.nrel.gov/pv/cell-efficiency.html for “Best Research-Cell Efficiency Chart” (last accessed May 05,
2021
).
3.
G.
Niu
,
X.
Guo
, and
L.
Wang
, “
Review of recent progress in chemical stability of perovskite solar cells
,”
J. Mater. Chem. A
3
(
17
),
8970
8980
(
2015
).
4.
M.
Asghar
,
J.
Zhang
,
H.
Wang
, and
P.
Lund
, “
Device stability of perovskite solar cells: A review
,”
Renewable Sustainable Energy Rev.
77
,
131
146
(
2017
).
5.
N.-G.
Park
, “
Perovskite solar cells: An emerging photovoltaic technology
,”
Mater. Today
18
(
2
),
65
72
(
2015
).
6.
T. T.
Ava
,
A.
Al Mamun
,
S.
Marsillac
, and
G.
Namkoong
, “
A review: Thermal stability of methylammonium lead halide based perovskite solar cells
,”
Appl. Sci.
9
(
1
),
188
(
2019
).
7.
M. I. H.
Ansari
,
A.
Qurashi
, and
M. K.
Nazeeruddin
, “
Frontiers, opportunities, and challenges in perovskite solar cells: A critical review
,”
J. Photochem. Photobiol. C
35
,
1
24
(
2018
).
8.
Y.
Fu
,
M. P.
Hautzinger
,
Z.
Luo
,
F.
Wang
,
D.
Pan
,
M. M.
Aristov
,
I. A.
Guzei
,
A.
Pan
,
X.
Zhu
, and
S.
Jin
, “
Incorporating large A cations into lead iodide perovskite cages: Relaxed goldschmidt tolerance factor and impact on exciton–phonon interaction
,”
ACS Cent. Sci.
5
(
8
),
1377
1386
(
2019
).
9.
G.
Kieslich
,
S.
Sun
, and
A. K.
Cheetham
, “
An extended tolerance factor approach for organic–inorganic perovskites
,”
Chem. Sci.
6
(
6
),
3430
3433
(
2015
).
10.
L.
Pedesseau
,
D.
Sapori
,
B.
Traore
,
R.
Robles
,
H. H.
Fang
,
M. A.
Loi
,
H. H.
Tsai
,
W. Y.
Nie
,
J. C.
Blancon
,
A.
Neukirch
,
S.
Tretiak
,
A. D.
Mohite
,
C.
Katan
,
J.
Even
, and
M.
Kepenekian
, “
Advances and promises of layered halide hybrid perovskite semiconductors
,”
ACS Nano
10
(
11
),
9776
9786
(
2016
).
11.
C. K.
Zhou
,
H. R.
Lin
,
Q. Q.
He
,
L. J.
Xu
,
M.
Worku
,
M.
Chaaban
,
S.
Lee
,
X. Q.
Shi
,
M. H.
Du
, and
B. W.
Ma
, “
Low dimensional metal halide perovskites and hybrids
,”
Mater. Sci. Eng. R
137
,
38
65
(
2019
).
12.
A.
Krishna
,
S.
Gottis
,
M. K.
Nazeeruddin
, and
F.
Sauvage
, “
Mixed dimensional 2D/3D hybrid perovskite absorbers: The future of perovskite solar cells?
,”
Adv. Funct. Mater.
29
(
8
),
1806482
(
2019
).
13.
G.
Grancini
and
M. K.
Nazeeruddin
, “
Dimensional tailoring of hybrid perovskites for photovoltaics
,”
Nat. Rev. Mater.
4
(
1
),
4
22
(
2019
).
14.
E.
Shi
,
Y.
Gao
,
B. P.
Finkenauer
,
A. H.
Coffey
, and
L.
Dou
, “
Two-dimensional halide perovskite nanomaterials and heterostructures
,”
Chem. Soc. Rev.
47
(
16
),
6046
6072
(
2018
).
15.
C.
Katan
,
N.
Mercier
, and
J.
Even
, “
Quantum and dielectric confinement effects in lower-dimensional hybrid perovskite semiconductors
,”
Chem. Rev.
119
(
5
),
3140
3192
(
2019
).
16.
X.
Li
,
J. M.
Hoffman
, and
M. G.
Kanatzidis
, “
The 2D halide perovskite rulebook: How the spacer influences everything from the structure to optoelectronic device efficiency
,”
Chem. Rev.
121
(
4
),
2230
2291
(
2021
).
17.
F.
Zhang
,
D. H.
Kim
,
H.
Lu
,
J.-S.
Park
,
B. W.
Larson
,
J.
Hu
,
L.
Gao
,
C.
Xiao
,
O. G.
Reid
, and
X.
Chen
, “
Enhanced charge transport in 2D perovskites via fluorination of organic cation
,”
J. Am. Chem. Soc.
141
(
14
),
5972
5979
(
2019
).
18.
R. L.
Milot
,
R. J.
Sutton
,
G. E.
Eperon
,
A. A.
Haghighirad
,
J.
Martinez Hardigree
,
L.
Miranda
,
H. J.
Snaith
,
M. B.
Johnston
, and
L. M.
Herz
, “
Charge-carrier dynamics in 2D hybrid metal–halide perovskites
,”
Nano Lett.
16
(
11
),
7001
7007
(
2016
).
19.
I. C.
Smith
,
E. T.
Hoke
,
D.
Solis‐Ibarra
,
M. D.
McGehee
, and
H. I.
Karunadasa
, “
A layered hybrid perovskite solar‐cell absorber with enhanced moisture stability
,”
Angew. Chem., Int. Ed.
53
(
42
),
11232
11235
(
2014
).
20.
J.
Zhang
,
J.
Qin
,
M.
Wang
,
Y.
Bai
,
H.
Zou
,
J. K.
Keum
,
R.
Tao
,
H.
Xu
,
H.
Yu
, and
S.
Haacke
, “
Uniform permutation of quasi-2D perovskites by vacuum poling for efficient, high-fill-factor solar cells
,”
Joule
3
(
12
),
3061
3071
(
2019
).
21.
T.
Luo
,
Y.
Zhang
,
Z.
Xu
,
T.
Niu
,
J.
Wen
,
J.
Lu
,
S.
Jin
,
S.
Liu
, and
K.
Zhao
, “
Compositional control in 2D perovskites with alternating cations in the interlayer space for photovoltaics with efficiency over 18%
,”
Adv. Mater.
31
(
44
),
1903848
(
2019
).
22.
G.
Wu
,
X.
Li
,
J.
Zhou
,
J.
Zhang
,
X.
Zhang
,
X.
Leng
,
P.
Wang
,
M.
Chen
,
D.
Zhang
, and
K.
Zhao
, “
Fine multi‐phase alignments in 2D perovskite solar cells with efficiency over 17% via slow post‐annealing
,”
Adv. Mater.
31
(
42
),
1903889
(
2019
).
23.
C.
Zuo
,
A. D.
Scully
,
D.
Vak
,
W.
Tan
,
X.
Jiao
,
C. R.
McNeill
,
D.
Angmo
,
L.
Ding
, and
M.
Gao
, “
Self‐assembled 2D perovskite layers for efficient printable solar cells
,”
Adv. Energy Mater.
9
(
4
),
1803258
(
2019
).
24.
J.
Calabrese
,
N.
Jones
,
R.
Harlow
,
N.
Herron
,
D.
Thorn
, and
Y.
Wang
, “
Preparation and characterization of layered lead halide compounds
,”
J. Am. Chem. Soc.
113
(
6
),
2328
2330
(
1991
).
25.
Y.
Li
,
J. V.
Milić
,
A.
Ummadisingu
,
J.-Y.
Seo
,
J.-H.
Im
,
H.-S.
Kim
,
Y.
Liu
,
M. I.
Dar
,
S. M.
Zakeeruddin
, and
P.
Wang
, “
Bifunctional organic spacers for formamidinium-based hybrid Dion–Jacobson two-dimensional perovskite solar cells
,”
Nano Lett.
19
(
1
),
150
157
(
2019
).
26.
L. N.
Quan
,
M.
Yuan
,
R.
Comin
,
O.
Voznyy
,
E. M.
Beauregard
,
S.
Hoogland
,
A.
Buin
,
A. R.
Kirmani
,
K.
Zhao
, and
A.
Amassian
, “
Ligand-stabilized reduced-dimensionality perovskites
,”
J. Am. Chem. Soc.
138
(
8
),
2649
2655
(
2016
).
27.
M.
Kepenekian
,
B.
Traore
,
J.-C.
Blancon
,
L.
Pedesseau
,
H.
Tsai
,
W.
Nie
,
C. C.
Stoumpos
,
M. G.
Kanatzidis
,
J.
Even
, and
A. D.
Mohite
, “
Concept of lattice mismatch and emergence of surface states in two-dimensional hybrid perovskite quantum wells
,”
Nano Lett.
18
(
9
),
5603
5609
(
2018
).
28.
J.-C.
Blancon
,
J.
Even
,
C. C.
Stoumpos
,
M. G.
Kanatzidis
, and
A. D.
Mohite
, “
Semiconductor physics of organic–inorganic 2D halide perovskites
,”
Nat. Nanotechnol.
15
(
12
),
969
985
(
2020
).
29.
L.
Mao
,
W.
Ke
,
L.
Pedesseau
,
Y.
Wu
,
C.
Katan
,
J.
Even
,
M. R.
Wasielewski
,
C. C.
Stoumpos
, and
M. G.
Kanatzidis
, “
Hybrid Dion–Jacobson 2D lead iodide perovskites
,”
J. Am. Chem. Soc.
140
(
10
),
3775
3783
(
2018
).
30.
B.-E.
Cohen
,
Y.
Li
,
Q.
Meng
, and
L.
Etgar
, “
Dion–Jacobson two-dimensional perovskite solar cells based on benzene dimethanammonium cation
,”
Nano Lett.
19
(
4
),
2588
2597
(
2019
).
31.
H.
Tsai
,
W.
Nie
,
J.-C.
Blancon
,
C. C.
Stoumpos
,
R.
Asadpour
,
B.
Harutyunyan
,
A. J.
Neukirch
,
R.
Verduzco
,
J. J.
Crochet
, and
S.
Tretiak
, “
High-efficiency two-dimensional Ruddlesden–Popper perovskite solar cells
,”
Nature
536
(
7616
),
312
316
(
2016
).
32.
D.
Ghosh
,
D.
Acharya
,
L.
Pedesseau
,
C.
Katan
,
J.
Even
,
S.
Tretiak
, and
A. J.
Neukirch
, “
Charge carrier dynamics in two-dimensional hybrid perovskites: Dion–Jacobson vs. Ruddlesden–Popper phases
,”
J. Mater. Chem. A
8
(
42
),
22009
22022
(
2020
).
33.
S.
Ahmad
,
P.
Fu
,
S.
Yu
,
Q.
Yang
,
X.
Liu
,
X.
Wang
,
X.
Wang
,
X.
Guo
, and
C.
Li
, “
Dion-Jacobson phase 2D layered perovskites for solar cells with ultrahigh stability
,”
Joule
3
(
3
),
794
806
(
2019
).
34.
X.
Gong
,
O.
Voznyy
,
A.
Jain
,
W.
Liu
,
R.
Sabatini
,
Z.
Piontkowski
,
G.
Walters
,
G.
Bappi
,
S.
Nokhrin
, and
O.
Bushuyev
, “
Electron–phonon interaction in efficient perovskite blue emitters
,”
Nat. Mater.
17
(
6
),
550
556
(
2018
).
35.
I.-H.
Park
,
Q.
Zhang
,
K. C.
Kwon
,
Z.
Zhu
,
W.
Yu
,
K.
Leng
,
D.
Giovanni
,
H. S.
Choi
,
I.
Abdelwahab
, and
Q.-H.
Xu
, “
Ferroelectricity and Rashba effect in a two-dimensional Dion-Jacobson hybrid organic–inorganic perovskite
,”
J. Am. Chem. Soc.
141
(
40
),
15972
15976
(
2019
).
36.
J.
Kang
and
L.-W.
Wang
, “
Dynamic disorder and potential fluctuation in two-dimensional perovskite
,”
J. Phys. Chem. Lett.
8
(
16
),
3875
3880
(
2017
).
37.
J.
Even
,
L.
Pedesseau
,
J.-M.
Jancu
, and
C.
Katan
, “
Importance of spin–orbit coupling in hybrid organic/inorganic perovskites for photovoltaic applications
,”
J. Phys. Chem. Lett.
4
(
17
),
2999
3005
(
2013
).
38.
L.
Pedesseau
,
J.-M.
Jancu
,
A.
Rolland
,
E.
Deleporte
,
C.
Katan
, and
J.
Even
, “
Electronic properties of 2D and 3D hybrid organic/inorganic perovskites for optoelectronic and photovoltaic applications
,”
Opt. Quantum Electron.
46
(
10
),
1225
1232
(
2014
).
39.
J.
Even
,
L.
Pedesseau
,
J. M.
Jancu
, and
C.
Katan
, “
DFT and k·p modelling of the phase transitions of lead and tin halide perovskites for photovoltaic cells
,”
Phys. Status Solidi RRL
8
(
1
),
31
35
(
2014
).
40.
D.
Meggiolaro
and
F.
De Angelis
, “
First-principles modeling of defects in lead halide perovskites: Best practices and open issues
,”
ACS Energy Lett.
3
(
9
),
2206
2222
(
2018
).
41.
D.
Ghosh
,
A. R.
Smith
,
A. B.
Walker
, and
M. S.
Islam
, “
Mixed A-cation perovskites for solar cells: Atomic-scale insights into structural distortion, hydrogen bonding, and electronic properties
,”
Chem. Mater.
30
(
15
),
5194
5204
(
2018
).
42.
D.
Ghosh
,
A.
Aziz
,
J. A.
Dawson
,
A. B.
Walker
, and
M. S.
Islam
, “
Putting the squeeze on lead iodide perovskites: Pressure-induced effects to tune their structural and optoelectronic behavior
,”
Chem. Mater.
31
(
11
),
4063
4071
(
2019
).
43.
G.
Onida
,
L.
Reining
, and
A.
Rubio
, “
Electronic excitations: Density-functional versus many-body Green's-function approaches
,”
Rev. Mod. Phys.
74
(
2
),
601
(
2002
).
44.
Y.
Fu
,
X.
Jiang
,
X.
Li
,
B.
Traoré
,
I.
Spanopoulos
,
C.
Katan
,
J.
Even
,
M. G.
Kanatzidis
, and
E.
Harel
, “
Cation engineering in two-dimensional Ruddlesden–Popper lead iodide perovskites with mixed large a-site cations in the cages
,”
J. Am. Chem. Soc.
142
(
8
),
4008
4021
(
2020
).
45.
J. P.
Perdew
and
M.
Levy
, “
Physical content of the exact Kohn-Sham orbital energies: Band gaps and derivative discontinuities
,”
Phys. Rev. Lett.
51
(
20
),
1884
(
1983
).
46.
J. P.
Perdew
, “
Density functional theory and the band gap problem
,”
Int. J. Quantum Chem.
28
(
S19
),
497
523
(
2009
).
47.
L.
Mao
,
R. M.
Kennard
,
B.
Traore
,
W.
Ke
,
C.
Katan
,
J.
Even
,
M. L.
Chabinyc
,
C. C.
Stoumpos
, and
M. G.
Kanatzidis
, “
Seven-layered 2D hybrid lead iodide perovskites
,”
Chem
5
(
10
),
2593
2604
(
2019
).
48.
B.
Cheng
,
T.-Y.
Li
,
P.-C.
Wei
,
J.
Yin
,
K.-T.
Ho
,
J. R. D.
Retamal
,
O. F.
Mohammed
, and
J.-H.
He
, “
Layer-edge device of two-dimensional hybrid perovskites
,”
Nat. Commun.
9
(
1
),
5196
(
2018
).
49.
M.
Park
,
A. J.
Neukirch
,
S. E.
Reyes-Lillo
,
M.
Lai
,
S. R.
Ellis
,
D.
Dietze
,
J. B.
Neaton
,
P.
Yang
,
S.
Tretiak
, and
R. A.
Mathies
, “
Excited-state vibrational dynamics toward the polaron in methylammonium lead iodide perovskite
,”
Nat. Commun.
9
(
1
),
2525
(
2018
).
50.
A. J.
Neukirch
,
I. I.
Abate
,
L.
Zhou
,
W.
Nie
,
H.
Tsai
,
L.
Pedesseau
,
J.
Even
,
J. J.
Crochet
,
A. D.
Mohite
, and
C.
Katan
, “
Geometry distortion and small polaron binding energy changes with ionic substitution in halide perovskites
,”
J. Phys. Chem. Lett.
9
(
24
),
7130
7136
(
2018
).
51.
D. W.
DeQuilettes
,
S.
Koch
,
S.
Burke
,
R. K.
Paranji
,
A. J.
Shropshire
,
M. E.
Ziffer
, and
D. S.
Ginger
, “
Photoluminescence lifetimes exceeding 8 μs and quantum yields exceeding 30% in hybrid perovskite thin films by ligand passivation
,”
ACS Energy Lett.
1
(
2
),
438
444
(
2016
).
52.
X.
Yang
,
Y.
Fu
,
R.
Su
,
Y.
Zheng
,
Y.
Zhang
,
W.
Yang
,
M.
Yu
,
P.
Chen
,
Y.
Wang
, and
J.
Wu
, “
Superior carrier lifetimes exceeding 6 μs in polycrystalline halide perovskites
,”
Adv. Mater.
32
(
39
),
2002585
(
2020
).
53.
H. M.
Jaeger
,
S.
Fischer
, and
O. V.
Prezhdo
, “
Decoherence-induced surface hopping
,”
J. Chem. Phys.
137
(
22
),
22A545
(
2012
).
54.
C.
Zhu
, “
Restoring electronic coherence/decoherence for a trajectory-based nonadiabatic molecular dynamics
,”
Sci. Rep.
6
(
1
),
24198
(
2016
).
55.
J.
Kang
and
L.-W.
Wang
, “
Nonadiabatic molecular dynamics with decoherence and detailed balance under a density matrix ensemble formalism
,”
Phys. Rev. B
99
(
22
),
224303
(
2019
).
56.
S.
Agrawal
,
W.
Lin
,
O. V.
Prezhdo
, and
D. J.
Trivedi
, “
Ab initio quantum dynamics of charge carriers in graphitic carbon nitride nanosheets
,”
J. Chem. Phys.
153
(
5
),
054701
(
2020
).
57.
A. V.
Akimov
and
O. V.
Prezhdo
, “
Persistent electronic coherence despite rapid loss of electron–nuclear correlation
,”
J. Phys. Chem. Lett.
4
(
22
),
3857
3864
(
2013
).
58.
W. M.
Itano
,
D. J.
Heinzen
,
J.
Bollinger
, and
D.
Wineland
, “
Quantum zeno effect
,”
Phys. Rev. A
41
(
5
),
2295
(
1990
).
59.
O. V.
Prezhdo
and
P. J.
Rossky
, “
Relationship between quantum decoherence times and solvation dynamics in condensed phase chemical systems
,”
Phys. Rev. Lett.
81
(
24
),
5294
(
1998
).
60.
O. V.
Prezhdo
, “
Quantum anti-zeno acceleration of a chemical reaction
,”
Phys. Rev. Lett.
85
(
21
),
4413
(
2000
).
61.
M. A.
Pérez-Osorio
,
R. L.
Milot
,
M. R.
Filip
,
J. B.
Patel
,
L. M.
Herz
,
M. B.
Johnston
, and
F.
Giustino
, “
Vibrational properties of the organic–inorganic halide perovskite CH3NH3PbI3 from theory and experiment: Factor group analysis, first-principles calculations, and low-temperature infrared spectra
,”
J. Phys. Chem. C
119
(
46
),
25703
25718
(
2015
).
62.
J. C.
Tully
, “
Molecular dynamics with electronic transitions
,”
J. Chem. Phys.
93
(
2
),
1061
1071
(
1990
).
63.
D.
Ghosh
,
D.
Acharya
,
L.
Zhou
,
W.
Nie
,
O. V.
Prezhdo
,
S.
Tretiak
, and
A. J.
Neukirch
, “
Lattice expansion in hybrid perovskites: Effect on optoelectronic properties and charge carrier dynamics
,”
J. Phys. Chem. Lett.
10
(
17
),
5000
5007
(
2019
).
64.
X.
Li
,
W.
Ke
,
B.
Traoré
,
P.
Guo
,
I.
Hadar
,
M.
Kepenekian
,
J.
Even
,
C.
Katan
,
C. C.
Stoumpos
, and
R. D.
Schaller
, “
Two-dimensional Dion–Jacobson hybrid lead iodide perovskites with aromatic diammonium cations
,”
J. Am. Chem. Soc.
141
(
32
),
12880
12890
(
2019
).

Supplementary Material

You do not currently have access to this content.