The outlook for producing useful practical devices within the paradigm of magnonics rests on our ability to emit, control, and detect coherent exchange spin waves on the nanoscale. Here, we argue that all these key functionalities can be delivered by chiral magnonic resonators—soft magnetic elements chirally coupled, via magneto–dipole interaction, to magnonic media nearby. Starting from the basic principles of chiral coupling, we outline how they could be used to construct devices and explore underpinning physics, ranging from basic logic gates to field programmable gate arrays, in-memory computing and artificial neural networks, and extending from one- to two- and three-dimensional architectures.

1.
V. V.
Kruglyak
,
S. O.
Demokritov
, and
D.
Grundler
, “
Magnonics
,”
J. Phys. D: Appl. Phys.
43
,
264001
(
2010
).
2.
A.
Barman
,
G.
Gubbiotti
,
S.
Ladak
 et al, “
The 2021 magnonics roadmap
,”
J. Phys.: Condens. Matter
33
,
413001
(
2021
).
3.
P.
Pirro
,
V. I.
Vasyuchka
,
A. A.
Serga
, and
B.
Hillebrands
, “
Advances in coherent magnonics
,”
Nat. Rev. Mater.
66
,
38
(
2021
).
4.
L.
Udvardi
and
L.
Szunyogh
, “
Chiral asymmetry of the spin-wave spectra in ultrathin magnetic films
,”
Phys. Rev. Lett.
102
,
207204
(
2009
).
5.
K.
Szulc
,
P.
Graczyk
,
M.
Mruczkiewicz
,
G.
Gubbiotti
, and
M.
Krawczyk
, “
Spin-wave diode and circulator based on unidirectional coupling
,”
Phys. Rev. Appl.
14
,
034063
(
2020
).
6.
A.
Hrabec
,
Z.
Luo
,
L. J.
Heyderman
, and
P.
Gambardella
, “
Synthetic chiral magnets promoted by the Dzyaloshinskii–Moriya interaction
,”
Appl. Phys. Lett.
117
,
130503
(
2020
).
7.
H.
Bouloussa
,
Y.
Roussigné
,
M.
Belmeguenai
,
A.
Stashkevich
,
S.-M.
Chérif
,
S. D.
Pollard
, and
H.
Yang
, “
Dzyaloshinskii–Moriya interaction induced asymmetry in dispersion of magnonic Bloch modes
,”
Phys. Rev. B
102
,
014412
(
2020
).
8.
R.  A.
Gallardo
,
D.
Cortés-Ortuño
,
T.
Schneider
,
A.
Roldán-Molina
,
F.
Ma
,
R. E.
Troncoso
,
K.
Lenz
,
H.
Fangohr
,
J.
Lindner
, and
P.
Landeros
, “
Flat bands, indirect gaps, and unconventional spin-wave behavior induced by a periodic Dzyaloshinskii–Moriya Interaction
,”
Phys. Rev. Lett.
122
,
067204
(
2019
).
9.
R. W.
Damon
and
J. R.
Eshbach
, “
Magnetostatic modes of a ferromagnet slab
,”
J. Phys. Chem. Solids
19
,
308
(
1961
).
10.
R. E.
Camley
, “
Nonreciprocal surface waves
,”
Surf. Sci. Rep.
7
,
103
(
1987
) and references therein.
11.
M.
Mruczkiewicz
,
E. S.
Pavlov
,
S. L.
Vysotsky
,
M.
Krawczyk
,
Y. A.
Filimonov
, and
S. A.
Nikitov
, “
Observation of magnonic band gaps in magnonic crystals with nonreciprocal dispersion relation
,”
Phys. Rev. B
90
,
174416
(
2014
).
12.
O.
Gladii
,
M.
Haidar
,
Y.
Henry
,
M.
Kostylev
, and
M.
Bailleul
, “
Frequency nonreciprocity of surface spin wave in permalloy thin films
,”
Phys. Rev. B
93
,
054430
(
2016
).
13.
R. A.
Gallardo
,
P.
Alvarado-Seguel
,
T.
Schneider
,
C.
Gonzalez-Fuentes
,
A.
Roldan-Molina
,
K.
Lenz
,
J.
Lindner
, and
P.
Landeros
, “
Spin-wave non-reciprocity in magnetization-graded ferromagnetic films
,”
New J. Phys.
21
,
033026
(
2019
).
14.
M.
Ishibashi
,
Y.
Shiota
,
T.
Li
,
S.
Funada
,
T.
Moriyama
, and
T.
Ono
, “
Switchable giant nonreciprocal frequency shift of propagating spin waves in synthetic antiferromagnets
,”
Sci. Adv.
6
,
eaaz6931
(
2020
).
15.
Y.
Au
,
M.
Dvornik
,
O.
Dmytriiev
, and
V. V.
Kruglyak
, “
Nanoscale spin wave valve and phase shifter
,”
Appl. Phys. Lett.
100
,
172408
(
2012
).
16.
Y.
Au
,
E.
Ahmad
,
O.
Dmytriiev
,
M.
Dvornik
,
T.
Davison
, and
V. V.
Kruglyak
, “
Resonant microwave-to-spin-wave transducer
,”
Appl. Phys. Lett.
100
,
182404
(
2012
).
17.
M.
Dvornik
,
Y.
Au
, and
V. V.
Kruglyak
, “
Micromagnetic simulations in magnonics
,”
Top. Appl. Phys.
125
,
101
(
2013
).
18.
T.
Schwarze
,
R.
Huber
,
G.
Duerr
, and
D.
Grundler
, “
Complete band gaps for magnetostatic forward volume waves in a two-dimensional magnonic crystal
,”
Phys. Rev. B
85
,
134448
(
2012
).
19.
S.
Klingler
,
P.
Pirro
,
T.
Bracher
,
B.
Leven
,
B.
Hillebrands
, and
A. V.
Chumak
, “
Spin-wave logic devices based on isotropic forward volume magnetostatic waves
,”
Appl. Phys. Lett.
106
,
212406
(
2015
).
20.
N. J.
Whitehead
,
S. A. R.
Horsley
,
T. G.
Philbin
, and
V. V.
Kruglyak
, “
A Luneburg lens for spin waves
,”
Appl. Phys. Lett.
113
,
212404
(
2018
).
21.
Three-Dimensional Magnonics. Layered, Micro- and Nanostructures
, edited by
G.
Gubbiotti
(
Jenny Stanford Publishing
,
Boca Raton
,
2019
).
22.
A.
Mahmoud
,
F.
Ciubotaru
,
F.
Vanderveken
,
A. V.
Chumak
,
S.
Hamdioui
,
C.
Adelmann
, and
S.
Cotofana
, “
Introduction to spin wave computing
,”
J. Appl. Phys.
128
,
161101
(
2020
).
23.
M.
Grassi
,
M.
Geilen
,
D.
Louis
,
M.
Mohseni
,
T.
Brächer
,
M.
Hehn
,
D.
Stoeffler
,
M.
Bailleul
,
P.
Pirro
, and
Y.
Henry
, “
Slow-wave-based nanomagnonic diode
,”
Phys. Rev. Appl.
14
,
024047
(
2020
).
24.
V. D.
Poimanov
,
A. N.
Kuchko
, and
V. V.
Kruglyak
, “
Scattering of exchange spin waves from a helimagnetic layer sandwiched between two semi-infinite ferromagnetic media
,”
Phys. Rev. B
102
,
104414
(
2020
).
25.
K. G.
Fripp
,
A. V.
Shytov
, and
V. V.
Kruglyak
, “
Spin-wave control using dark modes in chiral magnonic resonators
,”
Phys. Rev. B
104
,
054437
(
2021
).
26.
W. F.
Brown
,
Magnetostatic Principles in Ferromagnetism
(
North-Holland Publishing Company
,
Amsterdam
,
1962
).
27.
L. D.
Landau
and
E. M.
Lifshitz
,
Electrodynamics of Continuous Media
, 2nd ed. (
Butterworth-Heinemann
,
Oxford
,
1984
).
28.
T.
Yu
,
Y. M.
Blanter
, and
G. E. W.
Bauer
, “
Chiral pumping of spin waves
,”
Phys. Rev. Lett.
123
,
247202
(
2019
).
29.
J. L.
Chen
,
T.
Yu
,
C. P.
Liu
,
T.
Liu
,
M.
Madami
,
K.
Shen
,
J. Y.
Zhang
,
S.
Tu
,
M. S.
Alam
,
K.
Xia
,
M. Z.
Wu
,
G.
Gubbiotti
,
Y. M.
Blanter
,
G. E. W.
Bauer
, and
H. M.
Yu
, “
Excitation of unidirectional exchange spin waves by a nanoscale magnetic grating
,”
Phys. Rev. B
100
,
104427
(
2019
).
30.
T.
Yu
and
G. E. W.
Bauer
, “
Chiral coupling to magnetodipolar radiation
,”
Top. Appl. Phys.
138
,
1
(
2021
).
31.
T.
Schneider
,
A. A.
Serga
,
T.
Neumann
,
B.
Hillebrands
, and
M. P.
Kostylev
, “
Phase reciprocity of spin-wave excitation by a microstrip antenna
,”
Phys. Rev. B
77
,
214411
(
2008
).
32.
K.
Shibata
,
K.
Kasahara
,
K.
Nakayama
,
V. V.
Kruglyak
,
M. M.
Aziz
, and
T.
Manago
, “
Dependence of non-reciprocity in spin wave excitation on antenna configuration
,”
J. Appl. Phys.
124
,
243901
(
2018
).
33.
T.
Yu
,
H.
Wang
,
M. A.
Sentef
,
H.
Yu
, and
G. E. W.
Bauer
, “
Magnon trap by chiral spin pumping
,”
Phys. Rev. B
102
,
054429
(
2020
).
34.
K. G.
Fripp
and
V. V.
Kruglyak
, “
Spin-wave wells revisited: From wavelength conversion and Möbius modes to magnon valleytronics
,”
Phys. Rev. B
103
,
184403
(
2021
).
35.
N. I.
Polushkin
, “
Combined electron resonance driven by an all-oscillating potential of patterned magnets
,”
Phys. Rev. Lett.
103
,
077201
(
2009
).
36.
The ability of discrete modes of a magnetic nanoelement to launch omnidirectional spin waves propagating in a continuous film was shown in
V. E.
Demidov
,
S. O.
Demokritov
,
B.
Hillebrands
,
M.
Laufenberg
, and
P. P.
Freitas
, “
Radiation of spin waves by a single micrometer-sized magnetic element
,”
Appl. Phys. Lett.
85
,
2866
(
2004
).
37.
B.
Rana
and
Y.
Otani
, “
Towards magnonic devices based on voltage-controlled magnetic anisotropy
,”
Commun. Phys.
2
,
90
(
2019
).
38.
N.
Locatelli
,
V.
Cros
, and
J.
Grollier
, “
Spin-torque building blocks
,”
Nat. Mater.
13
,
11
(
2014
).
39.
H.
Wang
,
J.
Chen
,
T.
Yu
,
C.
Liu
,
C.
Guo
,
S.
Liu
,
K.
Shen
,
H.
Jia
,
T.
Liu
,
J.
Zhang
,
M. A.
Cabero
,
Q.
Song
,
S.
Tu
,
M.
Wu
,
X.
Han
,
K.
Xia
,
D.
Yu
,
G. E. W.
Bauer
, and
H.
Yu
, “
Nonreciprocal coherent coupling of nanomagnets by exchange spin waves
,”
Nano Res.
14
,
2133
(
2021
).
40.
H.
Yu
,
O.
d'Allivy Kelly
,
V.
Cros
,
R.
Bernard
,
P.
Bortolotti
,
A.
Anane
,
F.
Brandl
,
F.
Heimbach
, and
D.
Grundler
, “
Approaching soft x-ray wavelengths in nanomagnet-based microwave technology
,”
Nat. Commun.
7
,
11255
(
2016
).
41.
S.
Maendl
and
D.
Grundler
, “
Multi-directional emission and detection of spin waves propagating in yttrium iron garnet with wavelengths down to about 100 nm
,”
Appl. Phys. Lett.
112
,
192410
(
2018
).
42.
C.
Liu
,
J.
Chen
,
T.
Liu
,
F.
Heimbach
,
H.
Yu
,
Y.
Xiao
,
J.
Hu
,
M.
Liu
,
H.
Chang
,
T.
Stueckler
,
S.
Tu
,
Y.
Zhang
,
Y.
Zhang
,
P.
Gao
,
Z.
Liao
,
D.
Yu
,
K.
Xia
,
N.
Lei
,
W.
Zhao
, and
M.
Wu
, “
Long-distance propagation of short-wavelength spin waves
,”
Nat. Commun.
9
,
738
(
2018
).
43.
V. V.
Kruglyak
,
C. S.
Davies
,
Y.
Au
,
F. B.
Mushenok
,
G.
Hrkac
,
N. J.
Whitehead
,
S. A. R.
Horsley
,
T. G.
Philbin
,
V. D.
Poimanov
,
R.
Dost
,
D. A.
Allwood
,
B. J.
Inkson
, and
A. N.
Kuchko
, “
Graded magnonic index and spin wave fano resonances in magnetic structures: Excite, direct, capture
,” in
Spin Wave Confinement. Propagating Waves
, edited by
S. O.
Demokritov
(
Jenny Stanford Publishing
,
New York
,
2017
), Chap. 1.
44.
J.
Chen
,
H.
Wang
,
T.
Hula
,
C.
Liu
,
S.
Liu
,
T.
Liu
,
H.
Jia
,
Q.
Song
,
C.
Guo
,
Y.
Zhang
,
J.
Zhang
,
X.
Han
,
D.
Yu
,
M.
Wu
,
H.
Schultheiss
, and
H.
Yu
, “
Reconfigurable spin-wave interferometer at the nanoscale
,”
Nanoletter
21
,
6237
(
2021
).
45.
Z.
Zhang
,
S.
Liu
,
T.
Wen
,
D.
Zhang
,
L.
Jin
,
Y.
Liao
,
X.
Tang
, and
Z.
Zhong
, “
Bias-free reconfigurable magnonic phase shifter based on a spin-current controlled ferromagnetic resonator
,”
J. Phys. D: Appl. Phys.
53
,
105002
(
2020
).
46.
H.
Qin
,
R. B.
Holländer
,
L.
Flajšman
,
F.
Hermann
,
R.
Dreyer
,
G.
Woltersdorf
, and
S.
van Dijken
, “
Nanoscale magnonic Fabry–Pérot resonator for low-loss spin-wave manipulation
,”
Nat. Commun.
12
,
2293
(
2021
).
47.
R.
Huber
,
T.
Schwarze
, and
D.
Grundler
, “
Nanostripe of subwavelength width as a switchable semitransparent mirror for spin waves in a magnonic crystal
,”
Phys. Rev. B
88
,
100405
(
2013
).
48.
Q.
Wang
,
T.
Brächer
,
M.
Mohseni
,
B.
Hillebrands
,
V. I.
Vasyuchka
,
A. V.
Chumak
, and
P.
Pirro
, “
Nanoscale spin-wave wake-up receiver
,”
Appl. Phys. Lett.
115
,
092401
(
2019
).
49.
M.
Fazlali
,
S. A. H.
Banuazizi
,
M.
Ahlberg
,
M.
Dvornik
,
S. R.
Sani
,
S. M.
Mohseni
, and
J.
Akerman
, “
Tuning exchange-dominated spin-waves using lateral current spread in nanocontact spin-torque nano-oscillators
,”
J. Magn. Magn. Mater.
492
,
165503
(
2019
).
50.
A.
Haldar
and
A. O.
Adeyeye
, “
Functional magnetic waveguides for magnonics
,”
Appl. Phys. Lett.
119
,
060501
(
2021
).
51.
A. J.
Princep
,
R. A.
Ewings
,
S.
Ward
,
S.
Toth
,
C.
Dubs
,
D.
Prabhakaran
, and
A. T.
Boothroyd
, “
The full magnon spectrum of yttrium iron garnet
,”
NPJ Quant. Mater.
2
,
63
(
2017
).
52.
G.
Schmidt
,
C.
Hauser
,
P.
Trempler
,
M.
Paleschke
, and
E. T.
Papaioannou
, “
Ultra thin films of yttrium iron garnet with very low damping: A review
,”
Phys. Status Solidi B – Basis Sol. State Phys.
257
,
1900644
(
2020
).
53.
C.
Dubs
,
O.
Surzhenko
,
R.
Thomas
,
J.
Osten
,
T.
Schneider
,
K.
Lenz
,
J.
Grenzer
,
R.
Hübner
, and
E.
Wendler
, “
Low damping and microstructural perfection of sub-40 nm-thin yttrium iron garnet films grown by liquid phase epitaxy
,”
Phys. Rev. Mater.
4
,
024416
(
2020
).
54.
V. E.
Demidov
and
S. O.
Demokritov
, “
Magnonic waveguides studied by microfocus brillouin light scattering
,”
IEEE Trans. Magn.
51
,
1
(
2015
).
55.
Q.
Wang
,
B.
Heinz
,
R.
Verba
,
M.
Kewenig
,
P.
Pirro
,
M.
Schneider
,
T.
Meyer
,
B.
Lägel
,
C.
Dubs
,
T.
Brächer
, and
A. V.
Chumak
, “
Spin pinning and spin-wave dispersion in nanoscopic ferromagnetic waveguides
,”
Phys. Rev. Lett.
122
,
247202
(
2019
).
56.
Q.
Wang
,
M.
Kewenig
,
M.
Schneider
,
R.
Verba
,
F.
Kohl
,
B.
Heinz
,
M.
Geilen
,
M.
Mohseni
,
B.
Lägel
,
F.
Ciubotaru
,
C.
Adelmann
,
C.
Dubs
,
S. D.
Cotofana
,
O. V.
Dobrovolskiy
,
T.
Brächer
,
P.
Pirro
, and
A. V.
Chumak
, “
A magnonic directional coupler for integrated magnonic half-adders
,”
Nat. Electron.
3
,
765
(
2020
).
57.
K.
Sobucki
,
W.
Śmigaj
,
J.
Rychły
,
M.
Krawczyk
, and
P.
Gruszecki
, “
Resonant subwavelength control of the phase of spin waves reflected from a Gires–Tournois interferometer
,”
Sci. Rep.
11
,
4428
(
2021
).
58.
F.
Heyroth
,
C.
Hauser
,
P.
Trempler
,
P.
Geyer
,
F.
Syrowatka
,
R.
Dreyer
,
S. G.
Ebbinghaus
,
G.
Woltersdorf
, and
G.
Schmidt
, “
Monocrystalline freestanding three-dimensional yttrium-iron-garnet magnon nanoresonators
,”
Phys. Rev. Appl.
12
,
054031
(
2019
).
59.
T.
Brächer
,
P.
Pirro
, and
B.
Hillebrands
, “
Parallel pumping for magnon spintronics: Amplification and manipulation of magnon spin currents on the micron-scale
,”
Phys. Rep.
699
,
1
(
2017
).
60.
P.
Trempler
,
R.
Dreyer
,
P.
Geyer
,
C.
Hauser
,
G.
Woltersdorf
, and
G.
Schmidt
, “
Integration and characterization of micron-sized YIG structures with very low Gilbert damping on arbitrary substrates
,”
Appl. Phys. Lett.
117
,
232401
(
2020
).
61.
U.
Urdiroz
,
C.
Müller
,
A.
Gómez
,
M. T.
Magaz
,
D.
Granados
,
M.
Sánchez Agudo
,
J.
Rubio-Zuazo
,
G. R.
Castro
,
C.
Stan
,
N.
Tamura
,
H. A.
Padmore
,
F.
Cebollada
,
F. J.
Palomares
,
J.
McCord
, and
J. M.
González
, “
Spin waves excitation at micron-sized, anisotropy modified regions in amorphous Fe80B20 stripes: Local properties and inter-regions coupling
,”
Mater. Sci. Eng.: B
271
,
115258
(
2021
).
62.
O. S.
Latcham
,
Y. I.
Gusieva
,
A. V.
Shytov
,
O. Y.
Gorobets
, and
V. V.
Kruglyak
, “
Controlling acoustic waves using magneto-elastic Fano resonances
,”
Appl. Phys. Lett.
115
,
082403
(
2019
);
O. S.
Latcham
,
Y. I.
Gusieva
,
A. V.
Shytov
,
O. Y.
Gorobets
, and
V. V.
Kruglyak
, “
Erratum: ‘Controlling acoustic waves using magnetoelastic Fano resonances
,’”
Appl. Phys. Lett.
116
,
209902
(
2020
).
63.
A. V.
Vashkovsky
and
E. H.
Lock
, “
Properties of backward electromagnetic waves and negative reflection in ferrite films
,”
Phys.-Usp.
49
,
389
(
2006
).
64.
V.
Veerakumar
and
R. E.
Camley
, “
Magnon focusing in thin ferromagnetic films
,”
Phys. Rev. B
74
,
214401
(
2006
).
65.
B.
Dieny
and
M.
Chshiev
, “
Perpendicular magnetic anisotropy at transition metal/oxide interfaces and applications
,”
Rev. Mod. Phys.
89
,
025008
(
2017
).
66.
J.
Han
,
P.
Zhang
,
J. T.
Hou
,
S. A.
Siddiqui
, and
L.
Liu
, “
Mutual control of coherent spin waves and magnetic domain walls in a magnonic device
,”
Science
366
,
1121
(
2019
).
67.
V. D.
Poimanov
and
V. V.
Kruglyak
, “
Chirality of exchange spin waves exposed: Scattering and emission from interfaces between antiferromagnetically coupled ferromagnets
,”
J. Appl. Phys.
130
,
133902
(
2021
).
68.
C. S.
Davies
and
V. V.
Kruglyak
, “
Graded-index magnonics
,”
Low Temp. Phys.
41
,
760
(
2015
).
69.
D. L.
Mills
and
I. E.
Dzyaloshinskii
, “
Influence of electric fields on spin waves in simple ferromagnets: Role of the flexoelectric interaction
,”
Phys. Rev. B
78
,
184422
(
2008
).
70.
X.
Zhang
,
T.
Liu
,
M. E.
Flatté
, and
H. X.
Tang
, “
Electric-field coupling to spin waves in a centrosymmetric ferrite
,”
Phys. Rev. Lett.
113
,
037202
(
2014
).
71.
V. N.
Krivoruchko
,
A. S.
Savchenko
, and
V. V.
Kruglyak
, “
Electric-field control of spin-wave power flow and caustics in thin magnetic films
,”
Phys. Rev. B
98
,
024427
(
2018
).
72.
A.
Papp
,
G.
Csaba
, and
W.
Porod
, “
Characterization of nonlinear spin-wave interference by reservoir-computing metrics
,”
Appl. Phys. Lett.
119
,
112403
(
2021
).
73.
S.
Watt
,
M.
Kostylev
,
A. B.
Ustinov
, and
B. A.
Kalinikos
, “
Implementing a magnonic reservoir computer model based on time-delay multiplexing
,”
Phys. Rev. Appl.
15
,
064060
(
2021
).
74.
A. V.
Sadovnikov
,
S. A.
Odintsov
,
E. N.
Beginin
,
S. E.
Sheshukova
,
Y. P.
Sharaevskii
, and
S. A.
Nikitov
, “
Toward nonlinear magnonics: Intensity-dependent spin-wave switching in insulating side-coupled magnetic stripes
,”
Phys. Rev. B
96
,
144428
(
2017
).
75.
M. A.
Morozova
,
D. V.
Romanenko
,
O. V.
Matveev
,
S. V.
Grishin
,
Y. P.
Sharaevskii
, and
S. A.
Nikitov
, “
Suppression of periodic spatial power transfer in a layered structure based on ferromagnetic films
,”
J. Magn. Magn. Mater.
466
,
119
(
2018
).
76.
K.
Zakeri
, “
Magnonic crystals: Towards terahertz frequencies
,”
J. Phys.: Condens. Matter
32
,
363001
(
2020
).
77.
O. S.
Latcham
,
Y. I.
Gusieva
,
A. V.
Shytov
,
O. Y.
Gorobets
, and
V. V.
Kruglyak
, “
Hybrid magnetoacoustic metamaterials for ultrasound control
,”
Appl. Phys. Lett.
117
,
102402
(
2020
).
78.
M. T.
Kaffash
,
S.
Lendinez
, and
M. B.
Jungfleisch
, “
Nanomagnonics with artificial spin ice
,”
Phys. Lett. A
402
,
127364
(
2021
).
79.
J. C.
Gartside
,
A.
Vanstone
,
T.
Dion
,
K. D.
Stenning
,
D. M.
Arroo
,
H.
Kurebayashi
, and
W. R.
Branford
, “
Reconfigurable magnonic mode-hybridisation and spectral control in a bicomponent artificial spin ice
,”
Nat. Commun.
12
,
2488
(
2021
).
80.
P.
Schiffer
and
C.
Nisoli
, “
Artificial spin ice: Paths forward
,”
Appl. Phys. Lett.
118
,
110501
(
2021
).
81.
R.
Gieniusz
,
H.
Ulrichs
,
V. D.
Bessonov
,
U.
Guzowska
,
A. I.
Stognii
, and
A.
Maziewski
, “
Single antidot as a passive way to create caustic spin-wave beams in yttrium iron garnet films
,”
Appl. Phys. Lett.
102
,
102409
(
2013
).
82.
R.
Gieniusz
,
V. D.
Bessonov
,
U.
Guzowska
,
A. I.
Stognii
, and
A.
Maziewski
, “
An antidot array as an edge for total non-reflection of spin waves in yttrium iron garnet films
,”
Appl. Phys. Lett.
104
,
082412
(
2014
).
83.
M.
Mruczkiewicz
,
P.
Graczyk
,
P.
Lupo
,
A.
Adeyeye
,
G.
Gubbiotti
, and
M.
Krawczyk
, “
Spin-wave nonreciprocity and magnonic band structure in a thin permalloy film induced by dynamical coupling with an array of Ni stripes
,”
Phys. Rev. B
96
,
104411
(
2017
).
84.
P.
Graczyk
,
M.
Krawczyk
,
S.
Dhuey
,
W. G.
Yang
,
H.
Schmidt
, and
G.
Gubbiotti
, “
Magnonic band gap and mode hybridization in continuous permalloy films induced by vertical dynamic coupling with an array of permalloy ellipses
,”
Phys. Rev. B
98
,
174420
(
2018
).
85.
S.
Louis
,
I.
Lisenkov
,
S.
Nikitov
,
V.
Tyberkevych
, and
A.
Slavin
, “
Bias-free spin-wave phase shifter for magnonic logic
,”
AIP Adv.
6
,
065103
(
2016
).
86.
A. V.
Mikhailov
and
A. I.
Yaremchuk
, “
Forced motion of a domain wall in the field of a spin wave
,”
JETP Lett.
39
,
354
(
1984
)
A. V.
Mikhailov
and
A. I.
Yaremchuk
[
Pis'ma Zh. Eksp. Teor. Fiz.
39
,
296
(
1984
)].
87.
S.
Woo
,
T.
Delaney
, and
G. S. D.
Beach
, “
Magnetic domain wall depinning assisted by spin wave bursts
,”
Nat. Phys.
13
,
448
(
2017
).
88.
I. M.
Miron
,
T.
Moore
,
H.
Szambolics
,
L. D.
Buda-Prejbeanu
,
S.
Auffret
,
B.
Rodmacq
,
S.
Pizzini
,
J.
Vogel
,
M.
Bonfim
,
A.
Schuhl
, and
G.
Gaudin
, “
Fast current-induced domain-wall motion controlled by the Rashba effect
,”
Nat. Mater.
10
,
419
(
2011
).
89.
E. G.
Galkina
,
B. A.
Ivanov
,
N. E.
Kulagin
,
L. M.
Lerman
, and
I. A.
Yastremskii
, “
Dynamics of domain walls in chiral magnets
,”
J. Exp. Theor. Phys.
132
,
572
(
2021
).
90.
S.
Parkin
and
S. H.
Yang
, “
Memory on the racetrack
,”
Nat. Nanotechnol.
10
,
195
(
2015
).
91.
H.
Yu
,
J.
Xiao
, and
H.
Schultheiss
, “
Magnetic texture based magnonics
,”
Phys. Rep.
905
,
1
(
2021
).
92.
A.
Kozhevnikov
,
F.
Gertz
,
G.
Dudko
,
Y.
Filimonov
, and
A.
Khitun
, “
Pattern recognition with magnonic holographic memory device
,”
Appl. Phys. Lett.
106
,
142409
(
2015
).
93.
F.
Gertz
,
A. V.
Kozhevnikov
,
Y. A.
Filimonov
,
D. E.
Nikonov
, and
A.
Khitun
, “
Magnonic holographic memory: From proposal to device
,”
IEEE J. Explor. Solid-State Comp. Dev. Circuits
1
,
67
(
2015
).
94.
P.
Roberjot
,
K.
Szulc
,
J. W.
Kłos
, and
M.
Krawczyk
, “
Multifunctional operation of the double-layer ferromagnetic structure coupled by a rectangular nanoresonator
,”
Appl. Phys. Lett.
118
,
182406
(
2021
).
95.
A.
Lara
,
J. R.
Moreno
,
K. Y.
Guslienko
, and
F. G.
Aliev
, “
Information processing in patterned magnetic nanostructures with edge spin waves
,”
Sci. Rep.
7
,
5597
(
2017
).
96.
D.
Ielmini
and
S.
Ambrogio
, “
Emerging neuromorphic devices
,”
Nanotechnology
31
,
092001
(
2020
).
97.
D.
Marković
and
J.
Grollier
, “
Quantum neuromorphic computing
,”
Appl. Phys. Lett.
117
,
150501
(
2020
).
98.
C.
Chappert
,
A.
Fert
, and
F.
Nguyen Van Dau
, “
The emergence of spin electronics in data storage
,”
Nat. Mater.
6
,
813
(
2007
).
99.
A. V.
Sadovnikov
,
A. V.
Grachev
,
S. E.
Sheshukova
,
Y. P.
Sharaevskii
,
A. A.
Serdobintsev
,
D. M.
Mitin
, and
S. A.
Nikitov
, “
Magnon straintronics: Reconfigurable spin-wave routing in strain-controlled bilateral magnetic stripes
,”
Phys. Rev. Lett.
120
,
257203
(
2018
).
100.
A. V.
Sadovnikov
,
A. V.
Grachev
,
A. A.
Serdobintsev
,
S. E.
Sheshukova
,
S. S.
Yankin
, and
S. A.
Nikitov
, “
Magnon straintronics to control spin-wave computation: strain reconfigurable magnonic-crystal directional coupler
,”
IEEE Magn. Lett.
10
,
1
(
2019
).
101.
A.
Venugopal
,
T.
Qu
, and
R. H.
Victora
, “
Manipulation of nonlinear magnon effects using a secondary microwave frequency
,”
Appl. Phys. Lett.
117
,
152404
(
2020
).
102.
O. V.
Dobrovolskiy
,
R.
Sachser
,
T.
Brächer
,
T.
Bottcher
,
V. V.
Kruglyak
,
R. V.
Vovk
,
V. A.
Shklovskij
,
M.
Huth
,
B.
Hillebrands
, and
A. V.
Chumak
, “
Magnon-fluxon interaction in a ferromagnet/superconductor heterostructure
,”
Nat. Phys.
15
,
477
(
2019
).
103.
I. A.
Golovchanskiy
,
N. N.
Abramov
,
V. S.
Stolyarov
,
P. S.
Dzhumaev
,
O. V.
Emelyanova
,
A. A.
Golubov
,
V. V.
Ryazanov
, and
A. V.
Ustinov
, “
Ferromagnet/superconductor hybrid magnonic metamaterials
,”
Adv. Sci.
6
,
1900435
(
2019
).
104.
B. M.
Lebed
,
A. V.
Nikifororov
,
S. V.
Yakovlev
, and
I. A.
Yakovlev
, “
Spin-wave scattering from the magnetic vortical lattice in the high-T superconductor-ferrite film structure
,”
Fiz. Tverd. Tela
34
,
656
(
1992
).
105.
Y. F.
Ogrin
,
N. I.
Polzikova
,
A. O.
Raevskii
,
S. L.
Lee
, and
F. Y.
Ogrin
, “
Temperature dependence of the absorption of magnetostatic spin waves in ferrite-BiSrCaCuO structures
,”
J. Commun. Technol. Electron.
44
,
1215
(
1999
).
106.
J. R.
Hortensius
,
D.
Afanasiev
,
M.
Matthiesen
,
R.
Leenders
,
R.
Citro
,
A. V.
Kimel
,
R. V.
Mikhaylovskiy
,
B. A.
Ivanov
, and
A. D.
Caviglia
, “
Coherent spin-wave transport in an antiferromagnet
,”
Nat. Phys.
17
,
1001
(
2021
).
107.
G. E. W.
Bauer
,
E.
Saitoh
, and
B. J.
van Wees
, “
Spin caloritronics
,”
Nat. Mater.
11
,
391
(
2012
).
108.
M.
Harder
,
B. M.
Yao
,
Y. S.
Gui
, and
C.-M.
Hu
, “
Coherent and dissipative cavity magnonics
,”
J. Appl. Phys.
129
,
201101
(
2021
).
109.
D. A.
Bozhko
,
V. I.
Vasyuchka
,
A. V.
Chumak
, and
A. A.
Serga
, “
Magnon-phonon interactions in magnon spintronics (review article)
,”
Low Temp. Phys.
46
,
383
(
2020
).
You do not currently have access to this content.