The time-domain thermoreflectance metrology is applied to evaluate the thermal conductivities of filler particles embedded in a composite matrix. Specifically, a system of glass and ceramic microspheres with a diameter of 100 to 150 μm embedded in an epoxy matrix was used as a representation of a typical composite thermal interface material (TIM) suitable for microelectronics applications. These measurements provide a direct characterization of the thermal properties of filler materials. The measured thermal conductivities of both borosilicate glass and yttria stabilized zirconia microspheres agree well with literature values for bulk materials, whereas the thermal conductivity of the alumina microspheres is nearly 50% lower than that of bulk crystals. The reduction in thermal conductivity of the alumina microspheres highlights how important this level of understanding is for TIM development and is attributed to enhanced phonon scattering due to structural heterogeneity, such as defects induced by phase mixing and microvoids. Combining sample preparation, structural characterization, and direct thermal measurements, our study reveals the structure–thermal property relationship for individual microspheres. The results of this work can facilitate the design and engineering of composite-based thermally conductive materials for thermal management applications.

1.
Y.
Cui
,
M.
Li
, and
Y. J.
Hu
,
J. Mater. Chem. C
8
(
31
),
10568
10586
(
2020
).
2.
S.
Narumanchi
,
M.
Mihalic
,
K.
Kelly
, and
G.
Eesley
, Paper
Presented at the Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems XI
,
Orlando, FL,
2008
.
3.
Z. L.
Xiu
,
Y. Z.
Wu
,
X. P.
Hao
, and
L.
Zhang
,
Colloid Surf. A
386
(
1–3
),
135
140
(
2011
).
4.
X. Y.
Huang
,
C. Y.
Zhi
, and
P. K.
Jiang
,
J. Phys. Chem. C
116
(
44
),
23812
23820
(
2012
).
5.
M.
Shtein
,
R.
Nadiv
,
M.
Buzaglo
,
K.
Kahil
, and
O.
Regev
,
Chem. Mater.
27
(
6
),
2100
2106
(
2015
).
6.
A. P.
Yu
,
P.
Ramesh
,
M. E.
Itkis
,
E.
Bekyarova
, and
R. C.
Haddon
,
J. Phys. Chem. C
111
(
21
),
7565
7569
(
2007
).
7.
Y. F.
Xu
,
X. J.
Wang
, and
Q.
Hao
,
Compos. Commun.
24
,
100617
(
2021
).
8.
D. W.
Suh
,
C. M.
Moon
,
D. J.
Kim
, and
S. Y.
Baik
,
Adv. Mater.
28
(
33
),
7220
7227
(
2016
).
9.
P.
Zhang
,
J. H.
Zeng
,
S. P.
Zhai
,
Y. Q.
Xian
,
D. G.
Yang
, and
Q.
Li
,
Macromol. Mater. Eng.
302
(
9
),
1700068
(
2017
).
10.
N.
Burger
,
A.
Laachachi
,
M.
Ferriol
,
M.
Lutz
,
V.
Toniazzo
, and
D.
Ruch
,
Prog. Polym. Sci.
61
,
1
28
(
2016
).
11.
H. K.
Li
and
W. D.
Zheng
,
J. Compos. Mater.
55
(
1
),
17
25
(
2021
).
12.
G.
Droval
,
J.-F.
Feller
,
P.
Salagnac
, and
P.
Glouannec
,
Polym. Adv. Technol.
17
(
9–10
),
732
745
(
2006
).
13.
R. A.
Medina-Esquivel
,
M. A.
Zambrano-Arjona
,
J. A.
Mendez-Gamboa
,
J. M.
Yanez-Limon
,
J.
Ordonez-Miranda
, and
J. J.
Alvarado-Gil
,
J. Appl. Phys.
111
(
5
),
054906
(
2012
).
14.
Z. D.
Wang
,
Y. H.
Cheng
,
H. K.
Wang
,
M. M.
Yang
,
Y. Y.
Shao
,
X.
Chen
, and
T.
Tanaka
,
J. Mater. Sci.
52
(
8
),
4299
4308
(
2017
).
15.
W.-L.
Ong
,
S. M.
Rupich
,
D. V.
Talapin
,
A. J. H.
McGaughey
, and
J. A.
Malen
,
Nat. Mater.
12
(
5
),
410
415
(
2013
).
16.
M. L.
Liu
,
Y. Y.
Ma
, and
R. Y.
Wang
,
ACS Nano
9
(
12
),
12079
12087
(
2015
).
17.
A.
Minnich
and
G.
Chen
,
Appl. Phys. Lett.
91
(
7
),
073105
(
2007
).
18.
J. F.
Wang
,
J. K.
Carson
,
M. F.
North
, and
D. J.
Cleland
,
Int. J. Heat Mass Transfer
49
(
17
),
3075
3083
(
2006
).
19.
B. L.
Liao
and
G.
Chen
,
MRS Bull.
40
(
9
),
746
752
(
2015
).
20.
S.
Ren
,
J. C.
Liu
,
A. R.
Guo
,
W. J.
Zang
,
H. T.
Geng
,
X.
Tao
, and
H. Y.
Du
,
Mater. Sci. Eng. A
674
,
604
614
(
2016
).
21.
F.
Wang
,
X. Q.
Qian
,
X. W.
Li
,
J. K.
Ye
,
Z.
Han
,
Y. X.
Chen
,
G. H.
Liu
, and
J. T.
Li
,
Mater. Lett.
151
,
82
84
(
2015
).
22.
X. J.
Wang
,
V.
Ho
,
R. A.
Segalman
, and
D. G.
Cahill
,
Macromolecules
46
(
12
),
4937
(
2013
).
23.
X. J.
Wang
,
C. D.
Liman
,
N. D.
Treat
,
M. L.
Chabinyc
, and
D. G.
Cahill
,
Phys. Rev. B
88
(
7
),
075310
(
2013
).
24.
X. W.
Wu
,
J.
Walter
,
T. L.
Feng
,
J.
Zhu
,
H.
Zheng
,
J. F.
Mitchell
,
N.
Biškup
,
M.
Varela
,
X. L.
Ruan
,
C.
Leighton
, and
X. J.
Wang
,
Adv. Funct. Mater.
27
(
47
),
1704233
(
2017
).
25.
X. W.
Wu
,
B. L.
Greenberg
,
Y. Y.
Zhang
,
J. T.
Held
,
D. B.
Huang
,
J. G.
Barriocanal
,
K. A.
Mkhoyan
,
E. S.
Aydil
,
U.
Kortshagen
, and
X. J.
Wang
,
Phys. Rev. Mater.
4
(
8
),
086001
(
2020
).
26.
Y. Y.
Zhang
,
Q.
Su
,
J.
Zhu
,
S.
Koirala
,
S. J.
Koester
, and
X. J.
Wang
,
Appl. Phys. Lett.
116
(
20
),
202101
(
2020
).
27.
J.
Zhu
,
H. C.
Park
,
J.-Y.
Chen
,
X. K.
Gu
,
H.
Zhang
,
S.
Karthikeyan
,
N.
Wendel
,
S. A.
Campbell
,
M.
Dawber
,
X.
Du
,
M.
Li
,
J.-P.
Wang
,
R. G.
Yang
, and
X. J.
Wang
,
Adv. Electron. Mater.
2
(
5
),
1600040
(
2016
).
28.
D. G.
Cahill
,
Rev. Sci. Instrum.
75
(
12
),
5119
5122
(
2004
).
29.
R.
Cheaito
,
J. T.
Gaskins
,
M. E.
Caplan
,
B. F.
Donovan
,
B. M.
Foley
,
A.
Giri
,
J. C.
Duda
,
C. J.
Szwejkowski
,
C.
Constantin
,
H. J.
Brown-Shaklee
,
J. F.
Ihlefeld
, and
P. E.
Hopkins
,
Phys. Rev. B
91
(
3
),
035432
(
2015
).
30.
L. S.
Larkin
,
J. L.
Smoyer
, and
P. M.
Norris
,
Int. J. Heat Mass Transfer
109
,
786
790
(
2017
).
31.
M. G.
Burzo
,
P. L.
Komarov
, and
P. E.
Raad
,
IEEE Trans. Compon. Packag. Technol.
28
(
1
),
39
44
(
2005
).
32.
J.
Zhu
,
X. W.
Wu
,
D. M.
Lattery
,
W.
Zheng
, and
X. J.
Wang
,
Nanoscale Microscale Thermophys. Eng.
21
(
3
),
177
198
(
2017
).
33.
G. T.
Hohensee
,
W.-P.
Hsieh
,
M. D.
Losego
, and
D. G.
Cahill
,
Rev. Sci. Instrum.
83
(
11
),
114902
(
2012
).
34.
T.
Fu
,
Y. G.
Shen
,
Z. F.
Zhou
, and
K. Y.
Li
,
Mater. Sci. Eng. B
123
(
2
),
158
162
(
2005
).
35.
N.
Huda
,
M. A.
Whitney
,
M. H.
Razmpoosh
,
A. P.
Gerlich
,
J. Z.
Wen
, and
S. F.
Corbin
,
J. Am. Ceram. Soc.
104
,
1436
1447
(
2021
).
36.
H.-C.
Kao
and
W.-C.
Wei
,
J. Am. Ceram. Soc.
83
(
2
),
362
368
(
2004
).
37.
H.
Jena
,
R.
Asuvathraman
,
K. V. G.
Kutty
, and
P. R. V.
Rao
,
J. Therm. Anal. Calorim.
115
(
1
),
367
374
(
2014
).
38.
M. J.
Assael
,
S.
Botsios
,
K.
Gialou
, and
I. N.
Metaxa
,
Int. J. Thermophys.
26
(
5
),
1595
1605
(
2005
).
39.
J. R.
Nicholls
,
K. J.
Lawson
,
A.
Johnstone
, and
D. S.
Rickerby
,
Surf. Coat. Technol.
151–152
,
383
391
(
2002
).
40.
D. G.
Cahill
,
S. M.
Lee
, and
T. I.
Selinder
,
J. Appl. Phys.
83
(
11
),
5783
5786
(
1998
).
41.
G.
Soyez
,
J. A.
Eastman
,
L. J.
Thompson
,
G. R.
Bai
,
P. M.
Baldo
,
A. W.
McCormick
,
R. J.
DiMelfi
,
A. A.
Elmustafa
,
M. F.
Tambwe
, and
D. S.
Stone
,
Appl. Phys. Lett.
77
(
8
),
1155
1157
(
2000
).
42.
K. W.
Schlichting
,
N. P.
Padture
, and
P. G.
Klemens
,
J. Mater. Sci.
36
(
12
),
3003
3010
(
2001
).
43.
G.
Chen
,
Nanoscale Energy Transport and Conversion: A Parallel Treatment of Electrons, Molecules, Phonons, and Photons
(
Oxford University Press
,
Oxford
,
NY
,
2005
).
44.
I.
Levin
and
D.
Brandon
,
J. Am. Ceram. Soc.
81
(
8
),
1995
2012
(
2005
).
45.
S. P.
Zhai
,
P.
Zhang
,
Y. Q.
Xian
,
J. H.
Zeng
, and
B.
Shi
,
Int. J. Heat Mass Transfer
117
,
358
374
(
2018
).
You do not currently have access to this content.