A millimeter-wave (mm-wave) broadband circularly polarized (CP) magneto-electric (ME) dipole array antenna is proposed. The antenna element consists of a ME dipole, a direct T-shaped probe, and a pair of shorted parasitic elements. The shorted parasitic elements are employed to ensure a considerable expansion of the 3 dB axial ratio (AR) bandwidth to lower frequencies. As a result, the ME dipole antenna element achieves a wide overlapped AR/impedance bandwidth of 56.89% (22.45–40.3 GHz). Based on the proposed CP antenna element, a 2 × 2 CP array antenna that incorporates an improved X-shaped power divider network is developed. A prototype of the 2 × 2 CP array antenna is fabricated and experimentally verified. The measured results indicate that a −10 dB impedance bandwidth of 50.39% (23.9–40 GHz) and a 3 dB AR bandwidth of 50% (24–40 GHz) are achieved, forming a broad overlapped AR/impedance bandwidth of 24–40 GHz, which covers most of the current mm-wave 5G bands. Moreover, a peak gain of 14.88 dBic is also observed. Thus, the demonstrated antenna with broadband CP operation and good radiation performance can be an excellent candidate for 5G mm-wave applications.

1.
E.
Dahlman
,
G.
Mildh
,
S.
Parkvall
,
J.
Peisa
,
J.
Sachs
,
Y.
Selén
, and
J.
Sköld
,
IEEE Commun. Mag.
52
,
42
(
2014
).
2.
M. D.
Hill
,
D. B.
Cruickshank
, and
I. A.
MacFarlane
,
Appl. Phys. Lett.
118
,
120501
(
2021
).
3.
H.
Wang
and
I.
Park
,
J. Electromagn. Eng. Sci.
20
,
183
(
2020
).
4.
S.
Trinh-Van
,
J. M.
Lee
,
Y.
Yang
,
K. Y.
Lee
, and
K. C.
Hwang
,
IEEE Trans. Antennas Propag.
67
,
4528
(
2019
).
5.
B.
Zhang
and
Y. P.
Zhang
,
IEEE Antennas Propag. Mag.
53
,
42
(
2011
).
6.
S.
Lee
and
J.
Choi
,
J. Electromagn. Eng. Sci.
19
,
221
(
2019
).
7.
W. C.
Yang
,
H.
Wang
,
W. Q.
Che
, and
J.
Wang
,
IEEE Trans. Antennas Propag.
63
,
390
(
2015
).
8.
X.
Bai
,
S.-W.
Qu
, and
R.-L.
Xia
,
IEEE Trans. Antennas Propag.
62
,
5944
(
2014
).
9.
Y.
Li
and
K.
Luk
,
IEEE Trans. Antennas Propag.
64
,
554
(
2016
).
10.
M. J.
Marcus
,
IEEE Wireless Commun.
22
(
2
),
8
(
2015
).
11.
J.
Yin
,
Q.
Wu
,
C.
Yu
,
H.
Wang
, and
W.
Hong
,
IEEE Trans. Antennas Propag.
67
,
4895
(
2019
).
12.
J.
Wang
,
Y.
Li
,
J.
Wang
,
L.
Ge
,
M.
Chen
,
Z.
Zhang
, and
Z.
Li
,
IEEE Trans. Antennas Propag.
69
,
3
(
2021
).
13.
X.
Dai
and
K. M.
Luk
,
IEEE Trans. Antennas Propag.
69
,
2380
(
2021
).
14.
Y.
Sung
,
J. Electromagn. Eng. Sci.
19
,
37
(
2019
).
15.
Z.
Zahid
,
L.
Qu
,
H.-H.
Kim
, and
H.
Kim
,
J. Electromagn. Eng. Sci.
19
,
153
(
2019
).
16.
M.
Li
and
K.
Luk
,
IEEE Trans. Antennas Propag.
62
,
1872
(
2014
).
17.
X.
Ruan
and
C. H.
Chan
,
IEEE Trans. Antennas Propag.
67
,
2002
(
2019
).
18.
Y.
Wang
,
B.
Wu
,
N.
Zhang
,
Y.
Zhao
, and
T.
Su
,
IEEE Access
8
,
27516
(
2020
).
19.
B.
Feng
,
J.
Lai
,
K. L.
Chung
,
T. Y.
Chen
,
Y.
Liu
, and
C. Y. D.
Sim
,
IEEE Trans. Antennas Propag.
68
,
6838
(
2020
).
20.
Y.
Cheng
and
Y.
Dong
,
IEEE Trans. Antennas Propag.
69
,
2615
(
2021
).
21.
H.
Wong
,
K. K.
So
,
K. B.
Ng
,
K. M.
Luk
,
C. H.
Chan
, and
Q.
Xue
,
IEEE Antennas Wireless Propag. Lett.
9
,
1213
(
2010
).
You do not currently have access to this content.