Microneedle arrays have been proposed in a wide range of biomedical applications, such as transdermal drug delivery and sensing. However, a scalable manufacturing process of precise microneedle fabrication of the microneedle has been challenged. This paper demonstrates UV-lithography-based one-step fabrication of fine-tuned bell-tip microneedles using a combination of light diffraction and the self-aligned lens effect. Microscale photopatterns can derive the predictive diffraction patterns where the higher light intensity at the center of the photopattern solidifies the liquid photoresist and forms a microlens shape in a self-aligned manner. The light through the microlens focuses down to a sharp point to form a conical shape for the body of the microneedle. Then light propagation through the vertex of the cone causes light emission, creating a fine bell-tip. The described light propagation behavior was characterized and explained in terms of the light intensity distribution from the diffraction based on the extended Fresnel–Kirchhoff diffraction model. The optics finite element analysis software was used to verify the light propagation and the intensity distribution. The step-by-step fabrication process was demonstrated using biocompatible photosensitive resins and validated the light attenuation and the cross-linking energy. The 20 × 20 bell-tip microneedles' array was able to be fabricated from the predicted model. Finally, a microneedle array with various shapes and heights on the same substrate was fabricated by single light exposure, demonstrating numerous achievable shapes using the proposed microneedle fabrication method.

1.
E.
Larrañeta
,
R. E. M.
Lutton
,
A. D.
Woolfson
, and
R. F.
Donnelly
,
Mater. Sci. Eng. R: Rep.
104
,
1
32
(
2016
).
2.
A. H.
Sabri
,
Y.
Kim
,
M.
Marlow
,
D. J.
Scurr
,
J.
Segal
,
A. K.
Banga
,
L.
Kagan
, and
J. B.
Lee
,
Adv. Drug Delivery Rev.
153
,
195
(
2020
).
3.
J. H.
Park
,
M. G.
Allen
, and
M. R.
Prausnitz
,
J. Controlled Release
104
,
51
(
2005
).
4.
A.
Zaid Alkilani
,
M. T. C.
McCrudden
, and
R. F.
Donnelly
,
Pharmaceutics
7
,
438
(
2015
).
5.
B.
Yang
,
X.
Fang
, and
J.
Kong
,
Adv. Funct. Mater.
30
,
2000591
(
2020
).
6.
L.
Ventrelli
,
L. M.
Strambini
, and
G.
Barillaro
,
Adv. Healthcare Mater.
4
,
2606
(
2015
).
7.
Y.
Yoon
,
G. S.
Lee
,
K.
Yoo
, and
J. B.
Lee
,
Sensors
13
,
16672
(
2013
).
8.
Z.
Xiang
,
H.
Wang
,
S. K.
Murugappan
,
S. C.
Yen
,
G.
Pastorin
, and
C.
Lee
,
J. Micromech. Microeng.
25
,
025013
(
2015
).
9.
J.
Kim
,
S.
Paik
,
P.
Wang
,
S.
Kim
, and
M. G.
Allen
, in
2011 IEEE 24th International Conference on Micro Electro Mechanical Systems
(
IEEE
,
2011
), pp.
280
283
.
10.
11.
Y. W.
Chen
,
M. C.
Chen
,
K. W.
Wu
, and
T. Y.
Tu
,
Biomedicines
8
,
427
(
2020
).
12.
S. L.
Silvestre
,
D.
Araújo
,
A. C.
Marques
,
C.
Pires
,
M.
Matos
,
V.
Alves
,
R.
Martins
,
F.
Freitas
,
M. A. M.
Reis
, and
E.
Fortunato
,
ACS Appl. Bio Mater.
3
,
5856
(
2020
).
13.
H. R.
Nejad
,
A.
Sadeqi
,
G.
Kiaee
, and
S.
Sonkusale
,
Microsyst. Nanoeng.
4
(
1
),
17073
(
2018
).
14.
D.
Han
,
R. S.
Morde
,
S.
Mariani
,
A. A. L.
Mattina
,
E.
Vignali
,
C.
Yang
,
G.
Barillaro
, and
H.
Lee
,
Adv. Funct. Mater.
30
,
1909197
(
2020
).
15.
K. J.
Krieger
,
N.
Bertollo
,
M.
Dangol
,
J. T.
Sheridan
,
M. M.
Lowery
, and
E. D.
O'Cearbhaill
,
Microsyst. Nanoeng.
5
(
1
),
42
(
2019
).
16.
X.
Li
,
W.
Shan
,
Y.
Yang
,
D.
Joralmon
,
Y.
Zhu
,
Y.
Chen
,
Y.
Yuan
,
H.
Xu
,
J.
Rong
,
R.
Dai
,
Q.
Nian
,
Y.
Chai
, and
Y.
Chen
,
Adv. Funct. Mater.
31
,
2003725
(
2021
).
17.
C. P. P.
Pere
,
S. N.
Economidou
,
G.
Lall
,
C.
Ziraud
,
J. S.
Boateng
,
B. D.
Alexander
,
D. A.
Lamprou
, and
D.
Douroumis
,
Int. J. Pharm.
544
,
425
(
2018
).
18.
N.
El-Sayed
,
L.
Vaut
, and
M.
Schneider
,
Eur. J. Pharm. Biopharm.
154
,
166
(
2020
).
19.
P.
Dardano
,
S.
De Martino
,
M.
Battisti
,
B.
Miranda
,
I.
Rea
, and
L. D.
Stefano
,
Polymers
13
,
520
(
2021
).
20.
H.
Takahashi
,
Y. J.
Heo
, and
I.
Shimoyama
,
J. Microelectromech. Syst.
26
,
990
(
2017
).
21.
J.
Lim
,
D.
Tahk
,
J.
Yu
,
D. H.
Min
, and
N. L.
Jeon
,
Microsyst. Nanoeng.
4
(
1
),
29
(
2018
).
22.
H.
Takahashi
,
Y. J.
Heo
,
N.
Arakawa
,
T.
Kan
,
K.
Matsumoto
,
R.
Kawano
, and
I.
Shimoyama
,
Microsyst. Nanoeng.
2
(
1
),
16049
(
2016
).
23.
J. Y.
Tan
,
A.
Kim
, and
J.
Kim
, in
2021 21st International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS)
(
2021
).
24.
J. W.
Goodman
,
Introduction to Fourier Optics
(
Roberts and Company Publishers
,
2005
).
25.
E.
Rousseau
and
D.
Felbacq
,
ACS Photonics
7
,
1649
(
2020
).
26.
Formlabs, Surgical guide resin safety data sheet (2019), available at https://formlabs-media.formlabs.com/datasheets/surgical_guide_technical_data_sheet_en.pdf.
27.
S. J.
Paik
,
S.
Byun
,
J. M.
Lim
,
Y.
Park
,
A.
Lee
,
S.
Chung
,
J.
Chang
,
K.
Chun
, and
D.
“Dan” Cho
,
Sens. Actuators, A
114
,
276
(
2004
).
28.
K.
van der Maaden
,
W.
Jiskoot
, and
J.
Bouwstra
,
J. Controlled Release
161
,
645
(
2012
).
You do not currently have access to this content.