Single-walled carbon nanotubes (SWCNTs) are attractive materials for next-generation energy-harvesting technologies, including thermoelectric generators, due to their tunable opto-electronic properties and high charge carrier mobilities. Controlling the Fermi level within these unique 1D nanomaterials is often afforded by charge transfer interactions between SWCNTs and electron or hole accepting species. Conventional methods to dope SWCNT networks typically involve the diffusion of molecular redox dopant species into solid-state thin films, but solution-phase doping could potentially provide routes and/or benefits for charge carrier transport, scalability, and stability. Here, we develop a methodology for solution-phase doping of polymer-wrapped, highly enriched semiconducting SWCNTs using a p-type charge transfer dopant, F4TCNQ. This allows doped SWCNT inks to be cast into thin films without the need for additional post-deposition doping treatments. We demonstrate that the introduction of the dopant at varying stages of the SWCNT dispersion process impacts the ultimate thermoelectric performance and observe that the dopant alters the polymer selectivity for semiconducting vs metallic SWCNTs. In contrast to dense semiconducting polymer films, where solution-phase doping typically leads to disrupted morphologies and poorer TE performance than solid-state doping, thin films of solution-doped s-SWCNTs perform similarly to their solid-state doped counterparts. Interestingly, our results also suggest that solution-phase F4TCNQ doping leads to fully ionized and dimerized F4TCNQ anions in solid-state films that are not observed in films doped with F4TCNQ after deposition. Our results provide a framework for the application of solution-phase doping to a broad array of high-performance SWCNT-based thermoelectric materials and devices that may require high-throughput deposition techniques.

1.
A.
Zevalkink
,
D. M.
Smiadak
,
J. L.
Blackburn
,
A. J.
Ferguson
,
M. L.
Chabinyc
,
O.
Delaire
,
J.
Wang
,
K.
Kovnir
,
J.
Martin
,
L. T.
Schelhas
,
T. D.
Sparks
,
S. D.
Kang
,
M. T.
Dylla
,
G. J.
Snyder
,
B. R.
Ortiz
, and
E. S. A.
Toberer
, “
Practical field guide to thermoelectrics: Fundamentals, synthesis, and characterization
,”
Appl. Phys. Rev.
5
,
021303
(
2018
).
2.
H.
Wang
and
C.
Yu
, “
Organic thermoelectrics: Materials preparation, performance optimization, and device integration
,”
Joule
3
,
53
80
(
2019
).
3.
J. L.
Blackburn
, “
Semiconducting single-walled carbon nanotubes in solar energy harvesting
,”
ACS Energy Lett.
2
,
1598
1613
(
2017
).
4.
J. L.
Blackburn
,
A. J.
Ferguson
,
C.
Cho
, and
J. C.
Grunlan
, “
Carbon-nanotube-based thermoelectric materials and devices
,”
Adv. Mater.
30
,
1704386
(
2018
).
5.
T.
Sun
,
B.
Zhou
,
Q.
Zheng
,
L.
Wang
,
W.
Jiang
, and
G. J.
Snyder
, “
Stretchable fabric generates electric power from woven thermoelectric fibers
,”
Nat. Commun.
11
,
572
(
2020
).
6.
J.
Choi
,
Y.
Jung
,
C.
Dun
,
K. T.
Park
,
M. P.
Gordon
,
K.
Haas
,
P.
Yuan
,
H.
Kim
,
C. R.
Park
, and
J. J.
Urban
, “
High-performance, wearable thermoelectric generator based on a highly aligned carbon nanotube sheet
,”
ACS Appl. Energy Mater.
3
,
1199
1206
(
2020
).
7.
J.
Choi
,
Y.
Jung
,
S. J.
Yang
,
J. Y.
Oh
,
J.
Oh
,
K.
Jo
,
J. G.
Son
,
S. E.
Moon
,
C. R.
Park
, and
H.
Kim
, “
Flexible and robust thermoelectric generators based on all-carbon nanotube yarn without metal electrodes
,”
ACS Nano
11
,
7608
7614
(
2017
).
8.
A. D.
Avery
,
B. H.
Zhou
,
J.
Lee
,
E. S.
Lee
,
E. M.
Miller
,
R.
Ihly
,
D.
Wesenberg
,
K. S.
Mistry
,
S. L.
Guillot
,
B. L.
Zink
,
Y. H.
Kim
,
J. L.
Blackburn
, and
A. J.
Ferguson
, “
Tailored semiconducting carbon nanotube networks with enhanced thermoelectric properties
,”
Nat. Energy
1
,
16033
(
2016
).
9.
Y.
Ichinose
,
A.
Yoshida
,
K.
Horiuchi
,
K.
Fukuhara
,
N.
Komatsu
,
W.
Gao
,
Y.
Yomogida
,
M.
Matsubara
,
T.
Yamamoto
,
J.
Kono
, and
K.
Yanagi
, “
Solving the thermoelectric trade-off problem with metallic carbon nanotubes
,”
Nano Lett.
19
,
7370
7376
(
2019
).
10.
Y.
Nakai
,
K.
Honda
,
K.
Yanagi
,
H.
Kataura
,
T.
Kato
,
T.
Yamamoto
, and
Y.
Maniwa
, “
Giant Seebeck coefficient in semiconducting single-wall carbon nanotube film
,”
Appl. Phys. Express
7
,
025103
(
2014
).
11.
B. A.
MacLeod
,
N. J.
Stanton
,
I. E.
Gould
,
D.
Wesenberg
,
R.
Ihly
,
Z. R.
Owczarczyk
,
K. E.
Hurst
,
C. S.
Fewox
,
C. N.
Folmar
,
K.
Holman Hughes
,
B. L.
Zink
,
J. L.
Blackburn
, and
A. J.
Ferguson
, “
Large n- and p-type thermoelectric power factors from doped semiconducting single-walled carbon nanotube thin films
,”
Energy Environ. Sci.
10
,
2168
2179
(
2017
).
12.
D.
Hayashi
,
Y.
Nakai
,
H.
Kyakuno
,
T.
Yamamoto
,
Y.
Miyata
,
K.
Yanagi
, and
Y.
Maniwa
, “
Improvement of thermoelectric performance of single-wall carbon nanotubes by heavy doping: Effect of one-dimensional band multiplicity
,”
Appl. Phys. Express
9
,
125103
(
2016
).
13.
Y.
Nonoguchi
,
K.
Ohashi
,
R.
Kanazawa
,
K.
Ashiba
,
K.
Hata
,
T.
Nakagawa
,
C.
Adachi
,
T.
Tanase
, and
T.
Kawai
, “
Systematic conversion of single walled carbon nanotubes into n-type thermoelectric materials by molecular dopants
,”
Sci. Rep.
3
,
3344
(
2013
).
14.
Y.
Nonoguchi
,
M.
Nakano
,
T.
Murayama
,
H.
Hagino
,
S.
Hama
,
K.
Miyazaki
,
R.
Matsubara
,
M.
Nakamura
, and
T.
Kawai
, “
Simple salt-coordinated n-type nanocarbon materials stable in air
,”
Adv. Funct. Mater.
26
,
3021
3028
(
2016
).
15.
B.
Norton-Baker
,
R.
Ihly
,
I. E.
Gould
,
A. D.
Avery
,
Z. R.
Owczarczyk
,
A. J.
Ferguson
, and
J. L.
Blackburn
, “
Polymer-free carbon nanotube thermoelectrics with improved charge carrier transport and power factor
,”
ACS Energy Lett.
1
,
1212
1220
(
2016
).
16.
W.
Gao
,
N.
Komatsu
,
L. W.
Taylor
,
G. V.
Naik
,
K.
Yanagi
,
M.
Pasquali
, and
J.
Kono
, “
Macroscopically aligned carbon nanotubes for flexible and high-temperature electronics, optoelectronics, and thermoelectrics
,”
J. Phys. D: Appl. Phys.
53
,
063001
(
2020
).
17.
Y.
Nonoguchi
,
A.
Takata
,
C.
Goto
,
T.
Kitano
, and
T.
Kawai
, “
Thickness-dependent thermoelectric power factor of polymer-functionalized semiconducting carbon nanotube thin films
,”
Sci. Technol. Adv. Mater.
19
,
581
587
(
2018
).
18.
C.
Bounioux
,
P.
Diaz-Chao
,
M.
Campoy-Quiles
,
M. S.
Martin-Gonzalez
,
A. R.
Goni
,
R.
Yerushalmi-Rozene
, and
C.
Muller
, “
Thermoelectric composites of poly(3-hexylthiophene) and carbon nanotubes with a large power factor
,”
Energy Environ. Sci.
6
,
918
925
(
2013
).
19.
C. K.
Mai
,
B.
Russ
,
S. L.
Fronk
,
N.
Hu
,
M. B.
Chan-Park
,
J. J.
Urban
,
R. A.
Segalman
,
M. L.
Chabinyc
, and
G. C.
Bazan
, “
Varying the ionic functionalities of conjugated polyelectrolytes leads to both p- and n-Type carbon nanotube composites for flexible thermoelectrics
,”
Energy Environ. Sci.
8
,
2341
2346
(
2015
).
20.
N. T.
Hung
,
A. R.
Nugraha
,
E. H.
Hasdeo
,
M. S.
Dresselhaus
, and
R.
Saito
, “
Diameter dependence of thermoelectric power of semiconducting carbon nanotubes
,”
Phys. Rev. B
92
,
165426
(
2015
).
21.
J. L.
Blackburn
,
S. D.
Kang
,
M. J.
Roos
,
B.
Norton-Baker
,
E. M.
Miller
, and
A. J.
Ferguson
, “
Intrinsic and extrinsically limited thermoelectric transport within semiconducting single-walled carbon nanotube networks
,”
Adv. Electron. Mater.
5
,
1800910
(
2019
).
22.
K. S.
Mistry
,
B. A.
Larsen
,
J. D.
Bergeson
,
T. M.
Barnes
,
G.
Teeter
,
C.
Engtrakul
, and
J. L.
Blackburn
, “
N-type transparent conducting films of small molecule and polymer amine doped single-walled carbon nanotubes
,”
ACS Nano
5
,
3714
3723
(
2011
).
23.
B.
Russ
,
A.
Glaudell
,
J. J.
Urban
,
M. L.
Chabinyc
, and
R. A.
Segalman
, “
Organic thermoelectric materials for energy harvesting and temperature control
,”
Nat. Rev. Mater.
1
,
16050
(
2016
).
24.
D.
Kiefer
,
L.
Yu
,
E.
Fransson
,
A.
Gómez
,
D.
Primetzhofer
,
A.
Amassian
,
M.
Campoy-Quiles
, and
C. A.
Müller
, “
Solution-doped polymer semiconductor: Insulator blend for thermoelectrics
,”
Adv. Sci.
4
,
1600203
(
2017
).
25.
Y.
Diao
,
L.
Shaw
,
Z.
Bao
, and
S. C. B.
Mannsfeld
, “
Morphology control strategies for solution-processed organic semiconductor thin films
,”
Energy Environ. Sci.
7
,
2145
2159
(
2014
).
26.
M. T.
Fontana
,
D. A.
Stanfield
,
D. T.
Scholes
,
K. J.
Winchell
,
S. H.
Tolbert
, and
B. J.
Schwartz
, “
Evaporation vs solution sequential doping of conjugated polymers: F4TCNQ doping of micrometer-thick P3HT films for thermoelectrics
,”
J. Phys. Chem. C
123
,
22711
22724
(
2019
).
27.
D. T.
Scholes
,
S. A.
Hawks
,
P. Y.
Yee
,
H.
Wu
,
J. R.
Lindemuth
,
S. H.
Tolbert
, and
B. J.
Schwartz
, “
Overcoming film quality issues for conjugated polymers doped with F4TCNQ by solution sequential processing: Hall effect, structural, and optical measurements
,”
J. Phys. Chem. Lett.
6
,
4786
4793
(
2015
).
28.
S. N.
Patel
,
A. M.
Glaudell
,
K. A.
Peterson
,
E. M.
Thomas
,
K. A.
O'Hara
,
E.
Lim
, and
M. L.
Chabinyc
, “
Morphology controls the thermoelectric power factor of a doped semiconducting polymer
,”
Sci. Adv.
3
,
e1700434
(
2017
).
29.
A.
Jha
,
H.-G.
Duan
,
V.
Tiwari
,
M.
Thorwart
, and
R. J. D.
Miller
, “
Origin of poor doping efficiency in solution processed organic semiconductors
,”
Chem. Sci.
9
,
4468
4476
(
2018
).
30.
V. A.
Davis
,
A. N. G.
Parra-Vasquez
,
M. J.
Green
,
P. K.
Rai
,
N.
Behabtu
,
V.
Prieto
,
R. D.
Booker
,
J.
Schmidt
,
E.
Kesselman
,
W.
Zhou
,
H.
Fan
,
W. W.
Adams
,
R. H.
Hauge
,
J. E.
Fischer
,
Y.
Cohen
,
Y.
Talmon
,
R. E.
Smalley
, and
M.
Pasquali
, “
True solutions of single-walled carbon nanotubes for assembly into macroscopic materials
,”
Nat. Nanotechnol.
4
,
830
834
(
2009
).
31.
A.
Pénicaud
,
P.
Poulin
,
A.
Derré
,
E.
Anglaret
, and
P.
Petit
, “
Spontaneous dissolution of a single-wall carbon nanotube salt
,”
J. Am. Chem. Soc.
127
,
8
9
(
2005
).
32.
J.
Tan
,
Z.
Chen
,
D.
Wang
,
S.
Qin
,
X.
Xiao
,
D.
Xie
,
D.
Liu
, and
L.
Wang
, “
Balancing the electrical conductivity and Seebeck coefficient by controlled interfacial doping towards high performance benzothienobenzothiophene-based organic thermoelectric materials
,”
J. Mater. Chem. A
7
,
24982
24991
(
2019
).
33.
S.
Kazaoui
,
Y.
Guo
,
W.
Zhu
,
Y.
Kim
, and
N.
Minami
, “
Optical absorption spectroscopy of single-wall carbon nanotubes doped with a TCNQ derivative
,”
Synth. Met.
135–136
,
753
754
(
2003
).
34.
J. G.
Jang
,
S. Y.
Woo
,
H.
Lee
,
E.
Lee
,
S. H.
Kim
, and
J.-I.
Hong
, “
Supramolecular functionalization for improving thermoelectric properties of single-walled carbon nanotubes–small organic molecule hybrids
,”
ACS Appl. Mater. Interfaces
12
,
51387
51396
(
2020
).
35.
J. M.
Salazar-Rios
,
A. A.
Sengrian
,
W.
Talsma
,
H.
Duim
,
M.
Abdu-Aguye
,
S.
Jung
,
N.
Fröhlich
,
S.
Allard
,
U.
Scherf
, and
M. A.
Loi
, “
Customizing the polarity of single-walled carbon-nanotube field-effect transistors using solution-based additives
,”
Adv. Electron. Mater.
6
,
1900789
(
2020
).
36.
K. S.
Mistry
,
B. A.
Larsen
, and
J. L.
Blackburn
, “
High-yield dispersions of large-diameter semiconducting single-walled carbon nanotubes with tunable narrow chirality distributions
,”
ACS Nano
7
,
2231
2239
(
2013
).
37.
J. L.
Blackburn
,
A. J.
Ferguson
, and
O. G.
Reid
, “
Spectroscopy of ground- and excited-state charge carriers in single-wall carbon nanotubes
,” in
Handbook of Carbon Nanomaterials
, edited by
R.
Bruce Weisman
and
J.
Kono
(
Rice University
,
2019
), pp.
237
296
.
38.
Z.
Li
,
J.
Ding
,
J.
Lefebvre
, and
P. R. L.
Malenfant
, “
Dopant-modulated conjugated polymer enrichment of semiconducting SWCNTs
,”
ACS Omega
3
,
3413
3419
(
2018
).
39.
H.
Wang
,
B.
Hsieh
,
G.
Jiménez-Osés
,
P.
Liu
,
C. J.
Tassone
,
Y.
Diao
,
T.
Lei
,
K. N.
Houk
, and
Z.
Bao
, “
Solvent effects on polymer sorting of carbon nanotubes with applications in printed electronics
,”
Small
11
,
126
133
(
2015
).
40.
R. H.
Boyd
and
W. D.
Phillips
, “
Solution dimerization of the tetracyanoquinodimethane ion radical
,”
J. Chem. Phys.
43
,
2927
2929
(
1965
).
41.
J. B.
Torrance
, “
The difference between metallic and insulating salts of tetracyanoquinodimethone (TCNQ): How to design an organic metal
,”
Acc. Chem. Res.
12
,
79
86
(
1979
).
42.
R.
Kroon
,
D.
Kiefer
,
D.
Stegerer
,
L.
Yu
,
M.
Sommer
, and
C.
Müller
, “
Polar side chains enhance processability, electrical conductivity, and thermal stability of a molecularly p-doped polythiophene
,”
Adv. Mater.
29
,
1700930
(
2017
).
43.
C.
Wang
,
D. T.
Duong
,
K.
Vandewal
,
J.
Rivnay
, and
A.
Salleo
, “
Optical measurement of doping efficiency in poly(3-hexylthiophene) solutions and thin films
,”
Phys. Rev. B
91
,
085205
(
2015
).

Supplementary Material

You do not currently have access to this content.