A superconducting fluxonium circuit is an RF-superconducting quantum interference device-type flux qubit that uses a large inductance built from an array of Josephson junctions or a high kinetic inductance material. This inductance suppresses charge sensitivity exponentially and flux sensitivity quadratically. In contrast to the transmon qubit, the anharmonicity of fluxonium can be large and positive, allowing for better separation between the low energy qubit manifold of the circuit and higher-lying excited states. Here, we propose a tunable coupling scheme for implementing two-qubit gates on fixed-frequency fluxonium qubits, biased at half flux quantum. In this system, both qubits and couplers are coupled capacitively and implemented as fluxonium circuits with an additional harmonic mode. We investigate the performance of the scheme by simulating a universal two-qubit fSim gate. In the proposed approach, we rely on a planar on-chip architecture for the whole device. Our design is compatible with existing hardware for transmon-based devices with the additional advantage of lower qubit frequency facilitating high-precision gating.

1.
W. D.
Oliver
and
P. B.
Welander
, “
Materials in superconducting quantum bits
,”
MRS Bull.
38
(
10
),
816
(
2013
).
2.
Z. L.
Xiang
,
S.
Ashhab
,
J. Q.
You
, and
F.
Nori
, “
Hybrid quantum circuits: Superconducting circuits interacting with other quantum systems
,”
Rev. Mod. Phys.
85
(
2
),
623
(
2013
).
3.
A. P. M.
Place
,
L. V. H.
Rodgers
,
P.
Mundada
 et al, “
New material platform for superconducting transmon qubits with coherence times exceeding 0.3 milliseconds
,”
Nat. Commun.
12
,
1779
(
2021
).
4.
P.
Jurcevic
,
A.
Javadi-Abhari
,
L. S.
Bishop
 et al, “
Demonstration of quantum volume 64 on a superconducting quantum computing system
,”
Quantum Sci. Technol.
6
,
025020
(
2021
).
5.
F.
Arute
,
K.
Arya
,
R.
Babbush
 et al, “
Quantum supremacy using a programmable superconducting processor
,”
Nature
574
,
505
510
(
2019
).
6.
S. S.
Hong
,
A. T.
Papageorge
,
P.
Sivarajah
,
G.
Crossman
,
N.
Didier
,
A. M.
Polloreno
,
E. A.
Sete
,
S. W.
Turkowski
,
M. P.
da Silva
, and
B. R.
Johnson
, “
Demonstration of a parametrically activated entangling gate protected from flux noise
,”
Phys. Rev. A
101
,
012302
(
2020
).
7.
V. E.
Manucharyan
,
J.
Koch
,
L. I.
Glazman
, and
M. H.
Devoret
, “
Fluxonium: Single Cooper-pair circuit free of charge offsets,
Science
326
,
113
116
(
2009
).
8.
I.
Pop
,
K.
Geerlings
,
G.
Catelani
 et al, “
Coherent suppression of electromagnetic dissipation due to superconducting quasiparticles
,”
Nature
508
,
369
372
(
2014
).
9.
V. E.
Manucharyan
, “
Superinductance
,” Ph.D. thesis (
Yale University
,
2012
).
10.
L. B.
Nguyen
,
Y.-H.
Lin
,
A.
Somoroff
,
R.
Mencia
,
N.
Grabon
, and
V. E.
Manucharyan
, “
High-coherence fluxonium qubit
,”
Phys. Rev. X
9
,
041041
(
2019
).
11.
N. A.
Masluk
, “
Reducing the losses of the fluxonium artificial atom
,” Ph.D. thesis (
Yale University
,
2012
).
12.
H.
Zhang
,
S.
Chakram
,
T.
Roy
,
N.
Earnest
,
Y.
Lu
,
Z.
Huang
,
D. K.
Weiss
,
J.
Koch
, and
D. I.
Schuster
, “
Universal fast-flux control of a coherent, low-frequency qubit
,”
Phys. Rev. X
11
,
011010
(
2021
).
13.
S. T.
Skacel
,
C.
Kaiser
,
S.
Wuensch
,
H.
Rotzinger
,
A.
Lukashenko
,
M.
Jerger
,
G.
Weiss
,
M.
Siegel
, and
A. V.
Ustinov
,
Appl. Phys. Lett.
106
,
022603
(
2015
).
14.
R.
Gebauer
,
N.
Karcher
,
D.
Gusenkova
,
M.
Spiecker
,
L.
Grünhaupt
,
I.
Takmakov
,
P.
Winkel
,
L.
Planat
,
N.
Roch
,
W.
Wernsdorfer
,
A. V.
Ustinov
,
M.
Weber
,
M.
Weides
,
I. M.
Pop
, and
O.
Sander
, “
State preparation of a fluxonium qubit with feedback from a custom FPGA-based platform
,”
AIP Conf. Proc.
2241
,
020015
(
2020
).
15.
A.
Somoroff
,
Q.
Ficheux
,
R. A.
Mencia
,
H.
Xiong
,
R.
Kuzmin
, and
V. E.
Manucharyan
, “
Millisecond coherence in a superconducting qubit
,” arXiv:2103.08578 (
2021
).
16.
Q.
Ficheux
,
L. B.
Nguyen
,
A.
Somoroff
,
H.
Xiong
,
K. N.
Nesterov
,
M. G.
Vavilov
, and
V. E.
Manucharyan
, “
Fast logic with slow qubits: Microwave-activated controlled-Z gate on low-frequency fluxoniums
,”
Phys. Rev. X
11
,
021026
(
2021
).
17.
K. N.
Nesterov
,
Q.
Ficheux
,
V. E.
Manucharyan
, and
M. G.
Vavilov
, “
Proposal for entangling gates on fluxonium qubits via a two-photon transition
,”
PRX Quantum
2
,
020345
(
2021
).
18.
F.
Yan
,
Y.
Sung
,
P.
Krantz
,
A.
Kamal
,
D. K.
Kim
,
J. L.
Yoder
,
T. P.
Orlando
,
S.
Gustavsson
, and
W. D.
Oliver
, “
Engineering framework for optimizing superconducting qubit designs
,” arXiv:2006.04130v1 (
2020
).
19.
F.
Yan
,
P.
Krantz
,
Y.
Sung
,
M.
Kjaergaard
,
D. L.
Campbell
,
T. P.
Orlando
,
S.
Gustavsson
, and
W. D.
Oliver
, “
Tunable coupling scheme for implementing high-fidelity two-qubit gates
,”
Phys. Rev. Appl.
10
,
054062
(
2018
).
20.
X.
Li
,
T.
Cai
,
H.
Yan
,
Z.
Wang
,
X.
Pan
,
Y.
Ma
,
W.
Cai
,
J.
Han
,
Z.
Hua
,
X.
Han
,
Y.
Wu
,
H.
Zhang
,
H.
Wang
,
Y.
Song
,
L.
Duan
, and
L.
Sun
, “
Tunable coupler for realizing a controlled-phase gate with dynamically decoupled regime in a superconducting circuit
,”
Phys. Rev. Appl.
14
,
024070
(
2020
).
21.
P.
Mundada
,
G.
Zhang
,
T.
Hazard
, and
A.
Houck
, “
Suppression of qubit crosstalk in a tunable coupling superconducting circuit
,”
Phys. Rev. Appl.
12
,
054023
(
2019
).
22.
B.
Foxen
,
C.
Neill
,
A.
Dunsworth
 et al, “
Demonstrating a continuous set of two-qubit gates for near-term quantum algorithms
,”
Phys. Rev. Lett.
125
,
120504
(
2020
).
23.
M. A.
Nielsen
, “
A simple formula for the average gate fidelity of a quantum dynamical operation
,”
Phys. Lett. A
303
(
4
),
249
252
(
2002
).

Supplementary Material

You do not currently have access to this content.