HfO2 has many favorable characteristics for use in energy conversion devices including high thermodynamic stability, good chemical stability in corrosive electrolytes, high refractive index, and wide bandgap. Here, we report surface passivation of a c-Si photocathode by ultrathin HfO2 prepared using atomic layer deposition as an effective approach for enhancing its photoelectrochemical (PEC) performance. The effect of the thickness of HfO2, deposition temperature, and annealing in forming gas on the passivation performance are systematically investigated. We demonstrate that the Si photocathode with a p+/n/n+ structure decorated with a Ni3N/Ni cocatalyst and an HfO2 interlayer follows a metal–insulator–semiconductor mechanism with thicker HfO2 films proving detrimental to the PEC performance. The Si photocathode passivated with a 1 nm HfO2 layer exhibits an enhancement in the onset potential by 100 mV, an applied-bias photon-to-current efficiency of 9%, and improved operational stability. This work provides insights into the application of HfO2 as a passivating layer for Si photoelectrodes for solar hydrogen production.

1.
C. F.
Shih
,
T.
Zhang
,
J.
Li
, and
C.
Bai
,
Joule
2
(
10
),
1925
(
2018
);
H.
Lu
,
J.
Tournet
,
K.
Dastafkan
,
Y.
Liu
,
Y. H.
Ng
,
S. K.
Karuturi
,
C.
Zhao
, and
Z.
Yin
,
Chem. Rev.
121
(
17
),
10271
10366
(
2021
).
[PubMed]
2.
M. G.
Walter
,
E. L.
Warren
,
J. R.
McKone
,
S. W.
Boettcher
,
Q.
Mi
,
E. A
Santori
, and
N. S.
Lewis
,
Chem. Rev.
110
(
11
),
6446
(
2010
);
[PubMed]
G.
Liu
,
S. K.
Karuturi
,
H.
Chen
,
L.
Spiccia
,
H. H.
Tan
,
C.
Jagadish
,
D.
Wang
,
A. N.
Simonov
, and
A.
Tricoli
,
Nano Energy
53
,
745
(
2018
).
3.
M. A
Green
, paper presented at the
Seventh EC Photovoltaic Solar Energy Conference
,
1987
;
M. A.
Green
,
Philos. Trans. R. Soc. A
371
(
1996
),
20110413
(
2013
).
4.
Z.
Luo
,
T.
Wang
, and
J.
Gong
,
Chem. Soc. Rev.
48
(
7
),
2158
(
2019
);
[PubMed]
D.
Zhang
,
Y.
Cao
,
S. K.
Karuturi
,
M.
Du
,
M.
Liu
,
C.
Xue
,
R.
Chen
,
P.
Wang
,
J.
Zhang
, and
J.
Shi
,
ACS Appl. Energy Mater.
3
(
5
),
4629
(
2020
);
S. K.
Karuturi
,
H.
Shen
,
A.
Sharma
,
F. J.
Beck
,
P.
Varadhan
,
T.
Duong
,
P. R.
Narangari
,
D.
Zhang
,
Yi.
Wan
,Jr.
,
H.
He
,
H. H.
Tan
,
C.
Jagadish
, and
K.
Catchpole
,
Adv. Energy Mater.
10
(
28
),
2000772
(
2020
);
Y.
Wan
,
S. K.
Karuturi
,
C.
Samundsett
,
J.
Bullock
,
M.
Hettick
,
D.
Yan
,
J.
Peng
,
P. R.
Narangari
,
S.
Mokkapati
,
H. H.
Tan
,
C.
Jagadish
,
A.
Javey
, and
A.
Cuevas
,
ACS Energy Lett.
3
(
1
),
125
(
2018
).
5.
D.
Zhang
,
J.
Shi
,
W.
Zi
,
P.
Wang
, and
S.
Liu
,
ChemSusChem
10
(
22
),
4324
(
2017
).
6.
K.
Oh
,
C.
Mériadec
,
B.
Lassalle-Kaiser
,
V.
Dorcet
,
B.
Fabre
,
S.
Ababou-Girard
,
L.
Joanny
,
F.
Gouttefangeas
, and
G.
Loget
,
Energy Environ. Sci.
11
(
9
),
2590
(
2018
).
7.
S.
Hu
,
M. R.
Shaner
,
J. A.
Beardslee
,
M.
Lichterman
,
B. S.
Brunschwig
, and
N. S.
Lewis
,
Science
344
(
6187
),
1005
(
2014
).
8.
Z.
Zhou
,
S.
Wu
,
L.
Li
,
L.
Li
, and
X.
Li
,
ACS Appl. Mater. Interfaces
11
(
6
),
5978
(
2019
);
[PubMed]
L.
Santinacci
,
Atomic Layer Deposition in Energy Conversion Applications
(
Wiley
,
2017
), p.
225
;
J.-Y.
Jung
,
J.-Y.
Yu
, and
J.-H.
Lee
,
ACS Appl. Mater. Interfaces
10
(
9
),
7955
(
2018
);
[PubMed]
H.
Fu
,
P.
Varadhan
,
M.
Tsai
,
W.
Li
,
Q.
Ding
,
C.
Lin
,
M.
Bonifazi
,
A.
Fratalocchi
,
S.
Jin
, and
J.
He
,
Nano Energy
70
,
104478
(
2020
).
9.
Z.
Xing
,
F.
Ren
,
H.
Wu
,
L.
Wu
,
X.
Wang
,
J.
Wang
,
D.
Wan
,
G.
Zhang
, and
C.
Jiang
,
Sci. Rep.
7
(
1
),
43901
(
2017
).
10.
A. G.
Scheuermann
,
J. P.
Lawrence
,
K. W.
Kemp
,
T.
Ito
,
A.
Walsh
,
C. E.
Chidsey
,
P. K.
Hurley
, and
P. C.
McIntyre
,
Nat. Mater.
15
(
1
),
99
(
2016
).
11.
A. G.
Scheuermann
,
J. D.
Prange
,
M.
Gunji
,
C. E.
Chidsey
, and
P. C.
McIntyre
,
Energy Environ. Sci.
6
(
8
),
2487
(
2013
).
12.
P. R.
Narangari
,
S. K.
Karuturi
,
M.
Lysevych
,
H.
Hoe Tan
, and
C.
Jagadish
,
Nanotechnology
28
(
15
),
154001
(
2017
).
13.
P.
Chattopadhyay
and
A. N.
Daw
,
Solid-State Electron.
29
(
5
),
555
(
1986
);
M. Y.
Doghish
and
F. D.
Ho
,
IEEE Trans. Electron Devices
39
(
12
),
2771
(
1992
);
I. A.
Digdaya
,
G. W. P.
Adhyaksa
,
B. J.
Trześniewski
,
E. C.
Garnett
, and
W. A.
Smith
,
Nat. Commun.
8
(
1
),
1
(
2017
);
[PubMed]
S.
Lee
,
L.
Ji
,
A. C.
De Palma
, and
T. Y.
Edward
,
Nat. Commun.
12
(
1
),
1
(
2021
).
[PubMed]
14.
J.
Gope
,
N.
Batra
,
J.
Panigrahi
,
R.
Singh
,
K. K.
Maurya
,
R.
Srivastava
, and
P. K.
Singh
,
Appl. Surf. Sci.
357
,
635
(
2015
).
15.
J.
Cui
,
Y.
Wan
,
Y.
Cui
,
Y.
Chen
,
P.
Verlinden
, and
A.
Cuevas
,
Appl. Phys. Lett.
110
(
2
),
021602
(
2017
).
16.
D.
Huang
,
K.
Wang
,
L.
Yu
,
T. H.
Nguyen
,
S.
Ikeda
, and
F.
Jiang
,
ACS Energy Lett.
3
(
8
),
1875
(
2018
).
17.
M.
Seo
,
S. K.
Kim
,
Y.-S.
Min
, and
C. S.
Hwang
,
J. Mater. Chem.
21
(
46
),
18497
(
2011
).
18.
M.
Cho
,
J.
Park
,
H. B.
Park
,
C. S.
Hwang
,
J.
Jeong
, and
K. S.
Hyun
,
Appl. Phys. Lett.
81
(
2
),
334
(
2002
);
S. K.
Karuturi
,
L.
Liu
,
L. T.
Su
,
A.
Chutinan
,
N. P.
Kherani
,
T. K.
Chan
,
T.
Osipowicz
, and
A. I. Y.
Tok
,
Nanoscale
3
(
12
),
4951
(
2011
).
19.
S. R.
Wenham
and
M. A.
Green
,
Prog. Photovoltaics: Res. Appl.
4
(
1
),
3
(
1996
).
20.
S. M.
Sze
,
Y.
Li
, and
K. K.
Ng
,
Physics of Semiconductor Devices
(
John Wiley & Sons
,
2021
).
21.
D.
Barreca
,
A.
Milanov
,
R. A.
Fischer
,
A.
Devi
, and
E.
Tondello
,
Surf. Sci. Spectra
14
(
1
),
34
(
2007
);
L.-G.
Wang
,
X.
Qian
,
Y.-Q.
Cao
,
Z.-Y.
Cao
,
G.-Y.
Fang
,
A.-D.
Li
, and
D.
Wu
,
Nanoscale Res. Lett.
10
(
1
),
1
(
2015
).
[PubMed]

Supplementary Material

You do not currently have access to this content.