Wireless sensors find use in many practical applications, where wired connections possess a limitation. New realms of global connectivity and data exchange among various devices suggest putting a sensor on a consumable level, where electronic circuits are not affordable from an economic standpoint. Chipless approaches, aiming to address the later issue, typically come with a penalty of performance degradation and, in many cases, is seen as a compromise solution. Here, we demonstrate a concept of the extremely sensitive temperature sensor based on the bound states in the continuum (BIC) approach. A ceramic half-cylinder above a ground plane is designed to support high quality factor supercavity modes with a strong resonant dependence on an ambient temperate. The operation of the sensor is experimentally demonstrated in a broad range of temperatures, spanning from 25 to 105 °C with an average sensitivity of 4 MHz/°C. The key element, leading to this performance, is high-quality ceramics, which allows supporting confined modes with moderately low Ohmic losses and extremely high-quality factors above 1000. High-performance chipless devices, which are capable to accommodate several functions with a single platform, open a venue to a new generation of wireless distributed sensors, where the main technological and outlay efforts are placed on an interrogation side.

1.
L. D.
Xu
,
W.
He
, and
S.
Li
,
IEEE Trans. Ind. Inf.
10
,
2233
(
2014
).
2.
H.
Lasi
,
P.
Fettke
,
H. G.
Kemper
,
T.
Feld
, and
M.
Hoffmann
,
Bus. Inf. Syst. Eng.
6
,
239
(
2014
).
3.
V.
Mulloni
and
M.
Donelli
,
Sensors
20
,
2135
(
2020
).
4.
Y.
Feng
,
L.
Xie
,
Q.
Chen
, and
L. R.
Zheng
,
IEEE Sens. J.
15
,
3201
(
2015
).
5.
C.
Schuster
,
P.
Schumacher
,
M.
Schusler
,
A.
Jiménez-Sáez
, and
R.
Jakoby
, in
Proceedings of IEEE Sensors
(
2017
).
6.
S.
Dey
,
R.
Bhattacharyya
,
S. E.
Sarma
, and
N. C.
Karmakar
,
IEEE Internet Things J.
8
,
3955
(
2021
).
7.
C.
Shi
,
A.
Rani
,
B.
Thomson
,
R.
Debnath
,
A.
Motayed
,
D. E.
Ioannou
, and
Q.
Li
,
Appl. Phys. Lett.
115
,
121602
(
2019
).
8.
Y.
Li
,
Y.
Yu
,
H.
San
,
Y.
Wang
, and
L.
An
,
Appl. Phys. Lett.
103
,
013111
(
2013
).
9.
F.
Lu
,
Q.
Tan
,
Y.
Ji
,
Q.
Guo
,
Y.
Guo
, and
J.
Xiong
,
Sensors
18
,
2879
(
2018
).
10.
J. W.
Sanders
,
J.
Yao
, and
H.
Huang
,
IEEE Sens. J.
15
,
5312
(
2015
).
11.
T. T.
Thai
,
J. M.
Mehdi
,
F.
Chebila
,
H.
Aubert
,
P.
Pons
,
G. R.
Dejean
,
M. M.
Tentzeris
, and
R.
Plana
,
IEEE Sens. J.
12
,
2756
(
2012
).
12.
H.
Cheng
,
X.
Ren
,
S.
Ebadi
,
Y.
Chen
,
L.
An
, and
X.
Gong
,
IEEE Sens. J.
15
,
1453
(
2015
).
13.
B.
Kubina
,
M.
Schusler
,
C.
Mandel
,
A.
Mehmood
, and
R.
Jakoby
, in
Proceedings of IEEE Sensors
(
IEEE
,
2013
), p.
4
.
14.
S.
Dey
,
J. K.
Saha
, and
N. C.
Karmakar
,
IEEE Microwave Mag.
16
,
26
(
2015
).
15.
M.
Rybin
and
Y.
Kivshar
,
Nature
541
,
164
(
2017
).
16.
S. I.
Azzam
and
A. V.
Kildishev
,
Adv. Opt. Mater.
9
,
16
(
2021
).
17.
Y. K.
Srivastava
,
R. T.
Ako
,
M.
Gupta
,
M.
Bhaskaran
,
S.
Sriram
, and
R.
Singh
,
Appl. Phys. Lett.
115
,
151105
(
2019
).
18.
F.
Yesilkoy
,
E. R.
Arvelo
,
Y.
Jahani
,
M.
Liu
,
A.
Tittl
,
V.
Cevher
,
Y.
Kivshar
, and
H.
Altug
,
Nat. Photonics
13
,
390
(
2019
).
19.
D. N.
Maksimov
,
V. S.
Gerasimov
,
S.
Romano
, and
S. P.
Polyutov
,
Opt. Express
28
,
38907
(
2020
).
20.
A. A.
Bogdanov
,
K. L.
Koshelev
,
P. V.
Kapitanova
,
M. V.
Rybin
,
S. A.
Gladyshev
,
Z. F.
Sadrieva
,
K. B.
Samusev
,
Y. S.
Kivshar
, and
M. F.
Limonov
,
Adv. Photonics
1
,
016001
(
2019
).
21.
M. V.
Rybin
,
K. L.
Koshelev
,
Z. F.
Sadrieva
,
K. B.
Samusev
,
A. A.
Bogdanov
,
M. F.
Limonov
, and
Y. S.
Kivshar
,
Phys. Rev. Lett.
119
,
243901
(
2017
).
22.
M.
Odit
,
K.
Koshelev
,
S.
Gladyshev
,
K.
Ladutenko
,
Y.
Kivshar
, and
A.
Bogdanov
,
Adv. Mater.
33
,
2003804
(
2021
).
23.
D.
Vovchuk
,
S.
Kosulnikov
,
R. E.
Noskov
, and
P.
Ginzburg
,
Phys. Rev. B
102
,
094304
(
2020
).
24.
S.
Kosulnikov
,
D.
Filonov
,
A.
Boag
, and
P.
Ginzburg
,
Sci. Rep.
11
,
9571
(
2021
).
25.
E. A.
Nenasheva
,
A. D.
Kanareykin
,
N. F.
Kartenko
,
A. I.
Dedyk
, and
S. F.
Karmanenko
,
J. Electroceram.
13
,
235
(
2004
).
26.
N.
Pandit
,
R. K.
Jaiswal
, and
N. P.
Pathak
,
Electron. Lett.
56
,
985
(
2020
).
27.
M.
Wendt
,
Report CERN-94-01
, CAS—CERN Accelerator School: 5th General Accelerator Physics Course (
2020
).
28.
S.
Romano
,
G.
Zito
,
S.
Torino
,
G.
Calafiore
,
E.
Penzo
,
G.
Coppola
,
S.
Cabrini
,
I.
Rendina
, and
V.
Mocella
,
Photonics Res.
6
,
726
(
2018
).
29.
D.
Dobrykh
,
I.
Yusupov
,
S.
Krasikov
,
A.
Mikhailovskaya
,
D.
Shakirova
,
A. A.
Bogdanov
,
A.
Slobozhanyuk
,
D.
Filonov
, and
P.
Ginzburg
,
IEEE Trans. Antennas Propag.
69
,
3125
(
2021
).
30.
S.
Krasikov
,
M.
Odit
,
D.
Dobrykh
,
I.
Yusupov
,
A.
Mikhailovskaya
,
D.
Shakirova
,
A.
Shcherbakov
,
A.
Slobozhanyuk
,
P.
Ginzburg
,
D.
Filonov
, and
A.
Bogdanov
,
Phys. Rev. Appl.
15
,
024052
(
2021
).
You do not currently have access to this content.