Originally studied for their suitability to store information compactly, memristive networks are now being analyzed as implementations of neuromorphic circuits. An extremely high number of elements is, thus, mandatory. To surpass the limited achievable connectivity—due to the featuring size—exploiting self-assemblies has been proposed as an alternative, in turn posing new challenges. In an attempt for offering insight on what to expect when characterizing the collective electrical response of switching assemblies, in this work, networks of memristive elements are simulated. Collective electrical behavior and maps of resistance states are characterized upon different electrical stimuli. By comparing the response of homogeneous and heterogeneous networks, we delineate differences that might be experimentally observed when the number of memristive units is scaled up and disorder arises as an inevitable feature.

1.
L.
Chua
,
G.
Sirakoulis
, and
A.
Adamatzky
,
Handbook of Memristor Networks
(
Springer International Publishing
,
2019
).
2.
H.
Li
,
S.
Wang
,
X.
Zhang
,
W.
Wang
,
R.
Yang
,
Z.
Sun
,
W.
Feng
,
P.
Lin
,
Z.
Wang
,
L.
Sun
, and
Y.
Yao
,
Adv. Intell. Syst.
3
,
2100017
(
2021
).
3.
F.
Zahoor
,
T. Z.
Azni Zulkifli
, and
F. A.
Khanday
,
Nanoscale Res. Lett.
15
,
90
(
2020
).
4.
J.
Hochstetter
,
R.
Zhu
,
A.
Loeffler
,
A.
Diaz-Alvarez
,
T.
Nakayama
, and
Z.
Kuncic
,
Nat. Commun.
12
,
4008
(
2021
).
5.
M. P.
Sah
,
H.
Kim
, and
L.
Chua
, in
Handbook of Memristor Networks
, edited by
L.
Chua
,
G. C.
Sirakoulis
, and
A.
Adamatzky
(
Springer International Publishing
,
Cham
,
2019
), pp.
315
350
.
6.
L.
Chua
, in
Handbook of Memristor Networks
, edited by
L.
Chua
,
G. C.
Sirakoulis
, and
A.
Adamatzky
(
Springer International Publishing
,
Cham
,
2019
), pp.
287
313
.
7.
W.
Cai
and
R.
Tetzlaff
, in
Handbook of Memristor Networks
, edited by
L.
Chua
,
G. C.
Sirakoulis
, and
A.
Adamatzky
(
Springer International Publishing
,
Cham
,
2019
), pp.
351
367
.
8.
D. R.
Chialvo
,
Nat. Phys.
6
,
744
(
2010
).
9.
E.
Wang
,
J. J.
Davis
,
R.
Zhao
,
H.-C.
Ng
,
X.
Niu
,
W.
Luk
,
P. Y. K.
Cheung
, and
G. A.
Constantinides
,
ACM Comput. Surv.
52
(
40
),
1–39
(
2019
).
10.
A.
Karbachevsky
,
C.
Baskin
,
E.
Zheltonozhskii
,
Y.
Yermolin
,
F.
Gabbay
,
A. M.
Bronstein
, and
A.
Mendelson
,
Sustainability
13
,
717
(
2021
).
11.
L.
Chua
,
IEEE Trans. Circuit Theory
18
,
507
(
1971
).
12.
D. B.
Strukov
,
G. S.
Snider
,
D. R.
Stewart
, and
R. S.
Williams
,
Nature
453
,
80
(
2008
).
14.
Y. V.
Pershin
and
M. D.
Ventra
,
Adv. Phys.
60
,
145
(
2011
).
15.
Y. V.
Pershin
and
M.
Di Ventra
,
Radioengineering
22
,
485
489
(
2013
), arXiv:1204.2600.
16.
See http://ngspice.sourceforge.net/ for further information on NGSPICE.
17.
I.
Vourkas
and
G.
Sirakoulis
,
Memristor-Based Nanoelectronic Computing Circuits and Architectures
(
Springer
,
2015
).
18.
VM and Vext are equal only when isolated memristive units are considered. In networks, Vext is distributed among the multiple elements forming the assembly.
19.
It is worth mentioning the β choice also depends on the particular combination of A, ROFF, and RON.
20.
A.
Diaz-Alvarez
,
R.
Higuchi
,
P.
Sanz-Leon
,
I.
Marcus
,
Y.
Shingaya
,
A. Z.
Stieg
,
J. K.
Gimzewski
,
Z.
Kuncic
, and
T.
Nakayama
,
Sci. Rep.
9
,
14920
(
2019
).
21.
R.
Zhu
,
J.
Hochstetter
,
A.
Loeffler
,
A.
Diaz-Alvarez
,
T.
Nakayama
,
J. T.
Lizier
, and
Z.
Kuncic
,
Sci. Rep.
11
,
13047
(
2021
).
22.
G.
Catalan
,
J.
Seidel
,
R.
Ramesh
, and
J. F.
Scott
,
Rev. Mod. Phys.
84
,
119
(
2012
).
23.
J.
Seidel
,
L. W.
Martin
,
Q.
He
,
Q.
Zhan
,
Y.-H.
Chu
,
A.
Rother
,
M. E.
Hawkridge
,
P.
Maksymovych
,
P.
Yu
,
M.
Gajek
,
N.
Balke
,
S. V.
Kalinin
,
S.
Gemming
,
F.
Wang
,
G.
Catalan
,
J. F.
Scott
,
N. A.
Spaldin
,
J.
Orenstein
, and
R.
Ramesh
,
Nat. Mater.
8
,
229
(
2009
).
24.
A.
Loeffler
,
R.
Zhu
,
J.
Hochstetter
,
M.
Li
,
K.
Fu
,
A.
Diaz-Alvarez
,
T.
Nakayama
,
J. M.
Shine
, and
Z.
Kuncic
,
Front. Neurosci.
14
,
184
(
2020
).

Supplementary Material

You do not currently have access to this content.