Four equi- or near equi-molar platinum-group-metals-containing high entropy alloys (PGM-HEAs) have been developed with the aim to identify promising materials for ultra-high temperature applications. Experimental results indicate that IrNiPtRh and IrNiPtRhCo HEAs can form single phase fcc solid-solution, while secondary phases are also formed within the fcc matrix in IrNiPtRhAg0.5 and IrNiPtRhAl0.5 alloys, which are identified as (Ag, Pt)-rich fcc2 and (Pt, Ni)3Al-L12 phases, respectively. For mechanical performance, the room to high temperature hardness of PGM-HEAs is outstanding, especially for IrNiPtRhAl0.5, which shows significantly improved hot hardness than those of Ni-based superalloys, such as IN718 and Udimet 720Li, at temperatures above 800 °C, while it also exhibits much higher melting tolerance. It is related to the contributions from the advantages of platinum-group-metals, strong solution hardening, and L12 precipitation strengthening, thus providing superior resistance against thermal softening. It is believed that the current findings will shed light toward a promising research direction for ultrahigh-temperature applications, which is hard to achieve for the traditional platinum-group-alloys. In addition, the design space of compositionally complex alloys for future investigations would be significantly broadened.

1.
J. W.
Yeh
,
S. K.
Chen
,
S. J.
Lin
,
J. Y.
Gan
,
T. S.
Chin
,
T. T.
Shun
,
C. H.
Tsau
, and
S. Y.
Chang
, “
Nanostructured high‐entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes
,”
Adv. Eng. Mater.
6
(
5
),
299
303
(
2004
).
2.
Y.
Zhang
,
T. T.
Zuo
,
Z.
Tang
,
M.
Gao
,
K. A.
Dahmen
,
P. K.
Liaw
, and
Z. P.
Lu
, “
Microstructures and properties of high-entropy alloys
,”
Prog. Mater. Sci.
61
,
1
93
(
2014
).
3.
M. H.
Tsai
and
J. W.
Yeh
, “
High-entropy alloys: A critical review
,”
Mater. Res. Lett.
2
(
3
),
107
123
(
2014
).
4.
Y.
Zhang
,
T. T.
Zuo
,
Y. Q.
Cheng
, and
P. K.
Liaw
, “
High-entropy alloys with high saturation magnetization, electrical resistivity, and malleability
,”
Sci. Rep.
3
,
1455
(
2013
).
5.
B.
Gludovatz
,
A.
Hohenwarter
,
D.
Catoor
,
E.
Chang
,
E. P.
George
, and
R. O.
Ritchie
, “
A fracture-resistant high-entropy alloy for cryogenic applications
,”
Science
345
(
6201
),
1153
1158
(
2014
).
6.
D. B.
Miracle
,
J. D.
Miller
,
O. N.
Senkov
,
C.
Woodward
,
M. D.
Uchic
, and
J.
Tiley
, “
Exploration and development of high entropy alloys for structural applications
,”
Entropy
16
(
1
),
494
525
(
2014
).
7.
R. C.
Reed
,
The Superalloys: Fundamentals and Applications
(
Cambridge University Press
,
2008
).
8.
J. H.
Perepezko
, “
The hotter the engine, the better
,”
Science
326
(
5956
),
1068
1069
(
2009
).
9.
R. C.
Reed
,
T.
Tao
, and
N.
Warnken
, “
Alloys-by-design: Application to nickel-based single crystal superalloys
,”
Acta Mater.
57
(
19
),
5898
5913
(
2009
).
10.
K.
Kawagishi
,
A. C.
Yeh
,
T.
Yokokawa
,
T.
Kobayashi
,
Y.
Koizumi
, and
H.
Harada
, “
Development of an oxidation-resistant high-strength sixth-generation single-crystal superalloy TMS-238
,”
Superalloys
2012
,
189
195
(
2012
).
11.
S.
Sheikh
,
S.
Shafeie
,
Q.
Hu
,
J.
Ahlström
,
C.
Persson
,
J.
Veselý
,
J.
Zýka
,
U.
Klement
, and
S.
Guo
, “
Alloy design for intrinsically ductile refractory high-entropy alloys
,”
J. Appl. Phys.
120
(
16
),
164902
(
2016
).
12.
K. C.
Lo
,
Y. J.
Chang
,
H.
Murakami
,
J. W.
Yeh
, and
A. C.
Yeh
, “
An oxidation resistant refractory high entropy alloy protected by CrTaO4-based oxide
,”
Sci. Rep.
9
,
7266
(
2019
).
13.
K. C.
Lo
,
H.
Murakami
,
J. W.
Yeh
, and
A. C.
Yeh
, “
Oxidation behaviour of a novel refractory high entropy alloy at elevated temperatures
,”
Intermetallics
119
,
106711
(
2020
).
14.
S.
Sheikh
,
L.
Gan
,
A.
Ikeda
,
H.
Murakami
, and
S.
Guo
, “
Alloying effect on the oxidation behavior of a ductile Al0.5Cr0.25Nb0.5Ta0.5Ti1.5 refractory high-entropy alloy
,”
Mater. Today Adv.
7
,
100104
(
2020
).
15.
S.
Sheikh
,
L.
Gan
,
T. K.
Tsao
,
H.
Murakami
,
S.
Shafeie
, and
S.
Guo
, “
Aluminizing for enhanced oxidation resistance of ductile refractory high-entropy alloys
,”
Intermetallics
103
,
40
51
(
2018
).
16.
See http://www.vertex42.com/Files/pdfs/2/periodic-table.pdf for information about Ni, Co and platinum group metals.
17.
Y.
Mitarai
,
Y.
Gu
,
C.
Huang
,
R.
Völkl
, and
H.
Harada
, “
Platinum-group-metal-based intermetallics as high-temperature structural materials
,”
JOM
56
(
9
),
34
39
(
2004
).
18.
F. R.
Hartley
,
Chemistry of the Platinum Group Metals: Recent Developments
(
Elsevier
,
2013
), Vol.
11
.
19.
B.
Fischer
,
A.
Behrends
,
D.
Freund
,
D. F.
Lupton
, and
J.
Merker
, “
High temperature mechanical properties of the platinum group metals
,”
Platinum Met. Rev.
43
(
1
),
18
28
(
1999
), https://www.technology.matthey.com/article/43/1/18-28/.
20.
Y.
Mitarai
,
Y.
Koizumi
,
H.
Murakami
,
Y.
Ro
,
T.
Maruko
, and
H.
Harada
, “
Development of Ir-base refractory superalloys
,”
Scr. Mater.
35
(
2
),
211
215
(
1996
).
21.
Y.
Mitarai
,
Y.
Koizumi
,
H.
Murakami
,
Y.
Ro
,
T.
Maruko
, and
H.
Harada
, “
Rh-base refractory superalloys for ultra-high temperature use
,”
Scr. Mater.
36
(
4
),
393
398
(
1997
).
22.
Y.
Mitarai
,
Y.
Ro
,
H.
Harada
, and
T.
Maruko
, “
Ir-base refractory superalloys for ultra-high temperatures
,”
Metall. Mater. Trans. A
29
(
2
),
537
549
(
1998
).
23.
P. J.
Hill
,
T.
Biggs
,
P.
Ellis
,
J.
Hohls
,
S.
Taylor
, and
I. M.
Wolff
, “
An assessment of ternary precipitation-strengthened Pt alloys for ultra-high temperature applications
,”
Mater. Sci. Eng. A
301
(
2
),
167
179
(
2001
).
24.
L.
Cornish
,
B.
Fischer
, and
R.
Völkl
, “
Development of platinum-group-metal superalloys for high-temperature use
,”
MRS Bull.
28
(
9
),
632
638
(
2003
).
25.
See http://www.platinum.matthey.com for “
Johnson Matthey Website
.”
26.
Y. F.
Gu
,
Y.
Yamabe-Mitarai
,
S.
Nakazawa
,
Y.
Ro
, and
H.
Harada
, “
Microstructures and mechanical properties of (Ir,Rh)75Nb15Ni10 alloys
,”
Metall. Mater. Trans. A
33
(
4
),
1281
1283
(
2002
).
27.
S. W.
Sohn
,
Y. H.
Liu
,
J. B.
Liu
,
P.
Gong
,
S. P.
Rodel
,
A.
Blatter
,
B. E.
Scanley
,
C. C.
Broadbridge
, and
J.
Schroers
, “
Noble metal high entropy alloys
,”
Scr. Mater.
126
,
29
32
(
2017
).
28.
K. V.
Yusenko
,
S.
Riva
,
P. A.
Carvalho
,
M. V.
Yusenko
,
S.
Arnaboldi
,
A. S.
Sukhikh
,
M.
Hanfland
, and
S. A.
Gromilov
, “
First hexagonal close packed high-entropy alloy with outstanding stability under extreme conditions and electrocatalytic activity for methanol oxidation
,”
Scr. Mater.
138
,
22
27
(
2017
).
29.
A.
Takeuchi
,
T.
Wada
, and
H.
Kato
, “
High-entropy alloys with hexagonal close-packed structure in Ir26Mo20Rh22.5Ru20W11.5 and Ir25.5Mo20Rh20Ru25W9.5 alloys designed by sandwich strategy for the valence electron concentration of constituent elements in the periodic chart
,”
Mater. Trans.
60
,
1666
1673
(
2019
).
30.
A.
Takeuchi
,
T.
Wada
, and
H.
Kato
, “
Solid solutions with bcc, hcp, and fcc structures formed in a composition line in multicomponent IrRhRuWMo system
,”
Mater. Trans.
60
,
2267
2276
(
2019
).
31.
See http://www.substech.com/dokuwiki/doku.php?id=platinum_alloys for information of platinum-cobalt alloys.
32.
R. F.
Vines
and
E. M.
Wise
,
The Platinum Metals and Their Alloys
(
The International Nickel Company, Inc
.,
New York
,
1941
).
33.
B. W.
Lee
,
R.
Alsenz
,
A.
Ignatiev
, and
M. A.
Van Hove
, “
Surface structures of the two allotropic phases of cobalt
,”
Phys. Rev. B
17
(
4
),
1510
1520
(
1978
).
34.
H.
Baker
and
H.
Okamoto
,
ASM Handbook Volume 3: Alloy Phase Diagrams
(
American Society for Metals
,
Geauga County
,
1992
).
35.
K. Y.
Tsai
,
M. H.
Tsai
, and
J. W.
Yeh
, “
Sluggish diffusion in Co-Cr-Fe-Mn-Ni high-entropy alloys
,”
Acta Mater.
61
(
13
),
4887
4897
(
2013
).
36.
A.
Schneider
and
U.
Esch
, “
Das System Silber‐Platin. Ein Beitrag zur Frage der Spannungskorrosion
,”
Zeitschrift fur Electrochemie und angewandte physikalische Chemie
49
(
2
),
72
89
(
1943
).
37.
D. M.
Wee
,
O.
Noguchi
,
Y.
Oya
, and
T.
Suzuki
, “
New Ll2 ordered alloys having the positive temperature-dependence of strength
,”
Trans. Jpn. Inst. Met.
21
(
4
),
237
247
(
1980
).
38.
M.
Wenderoth
,
U.
Glatzel
,
R.
Völkl
,
L. A.
Cornish
,
R.
Süss
,
S.
Vorberg
, and
B.
Fischer
, “
On the development and investigation of quaternary Pt-based superalloys with Ni additions
,”
Metall. Mater. Trans. A
36
(
3
),
567
575
(
2005
).
39.
H.
Meininger
and
M.
Ellner
, “
Phase transformation and the type of lattice distortion of some platinum-rich phases belonging to the Cu family
,”
J. Alloys Compd.
353
(
1–2
),
207
212
(
2003
).
40.
H.
Okamoto
, “
Al-Ir (aluminum-iridium)
,”
J. Phase Equilib.
21
,
409
(
2000
).
41.
C.
Huang
,
Y.
Mitarai
, and
H.
Harada
, “
The stabilization of Pt3Al phase with L12 structure in Pt–Al–Ir–Nb and Pt–Al–Nb alloys
,”
J. Alloys Compd.
366
(
1
),
217
221
(
2004
).
42.
A.
Douglas
,
P. J.
Hill
,
T.
Murakumo
,
L. A.
Cornish
, and
R.
Süss
, “
The platinum development initiative: Platinum-based alloys for high temperature and special applications: Part II
,”
Platinum Met. Rev.
53
(
2
),
69
77
(
2009
).
43.
J. B.
Sha
and
Y.
Mitarai
, “
Ir–Hf–Zr ternary refractory superalloys for ultra-high temperatures—Phase and microstructural constitution
,”
Intermetallics
41
,
1
9
(
2013
).
44.
T.
Saito
,
Y. T.
Chen
,
Y.
Takata
,
K.
Kawagishi
,
W. C.
Hsu
,
A. C.
Yeh
, and
H.
Murakami
, “
Effect of heat treatments on the microstructural evolution of a single crystal high-entropy superalloy
,”
Metals
10
,
1600
(
2020
).
45.
I.
Karakaya
and
W.
Thompson
, “
The Ag-Pt (silver-platinum) system
,”
J. Phase Equilib.
8
(
4
),
334
340
(
1987
).
46.
G.
Rakhtsaum
, “
PGM highlights: Platinum alloys: A selective review of the available literature
,”
Platinum Met. Rev.
57
(
3
),
202
213
(
2013
).
47.
G.
Salishchev
,
M. A.
Tikhonovsky
,
D. G.
Shaysultanov
,
N. D.
Stepanov
,
A. V.
Kuznetsov
,
I. V.
Kolodiy
,
A. S.
Tortika
, and
O. N.
Senkov
, “
Effect of Mn and V on structure and mechanical properties of high-entropy alloys based on CoCrFeNi system
,”
J. Alloys Compd.
591
,
11
21
(
2014
).
48.
C. C.
Juan
,
K. K.
Tseng
,
W. L.
Hsu
,
M. H.
Tsai
,
C. W.
Tsai
,
C. M.
Lin
,
S. K.
Chen
,
S. J.
Lin
, and
J. W.
Yeh
, “
Solution strengthening of ductile refractory HfMoxNbTaTiZr high-entropy alloys
,”
Mater. Lett.
175
,
284
287
(
2016
).
49.
W. R.
Wang
,
W. L.
Wang
, and
J. W.
Yeh
, “
Phases, microstructure and mechanical properties of AlxCoCrFeNi high-entropy alloys at elevated temperatures
,”
J. Alloys Compd.
589
,
143
152
(
2014
).
50.
G.
Sharma
,
R. V.
Ramanujan
,
T. R. G.
Kutty
, and
G. P.
Tiwari
, “
Hot hardness and indentation creep studies of a Fe–28Al–3Cr–0.2C alloy
,”
Mater. Sci. Eng.: A
278
(
1
),
106
112
(
2000
).
51.
D.
Maugis
, “
Creep, hot hardness and sintering in the adhesion of metals at high-temperature
,”
Wear
62
(
2
),
349
386
(
1980
).
52.
C. Y.
Hsu
,
C. C.
Juan
,
W. R.
Wang
,
T. S.
Sheu
,
J. W.
Yeh
, and
S. K.
Chen
, “
On the superior hot hardness and softening resistance of AlCoCrxFeMo0.5Ni high-entropy alloys
,”
Mater. Sci. Eng.: A
528
(
10
),
3581
3588
(
2011
).
53.
J. H.
Westbrook
, “
Temperature dependence of the hardness of secondary phases common in turbine bucket alloys
,”
JOM
9
(
7
),
898
904
(
1957
).
54.
K. B.
Khan
,
T.
Kutty
, and
M.
Surappa
, “
Hot hardness and indentation creep study on Al–5% Mg alloy matrix–B4C particle reinforced composites
,”
Mater. Sci. Eng.: A
427
(
1–2
),
76
82
(
2006
).
55.
T. K.
Tsao
,
A. C.
Yeh
,
C. M.
Kuo
,
K.
Kakehi
,
H.
Murakami
,
J. W.
Yeh
, and
S. R.
Jian
, “
The high temperature tensile and creep behaviors of high entropy superalloy
,”
Sci. Rep.
7
,
12658
(
2017
).
56.
Y. T.
Chen
,
Y. J.
Chang
,
H.
Murakami
,
T.
Sasaki
,
K.
Hono
,
C. W.
Li
,
K.
Kakehi
,
J. W.
Yeh
, and
A. C.
Yeh
, “
Hierarchical microstructure strengthening in a single crystal high entropy superalloy
,”
Sci. Rep.
10
(
1
),
12163
(
2020
).
You do not currently have access to this content.