We report that spin polarization occurs over millimeters in polycrystalline bulk samples of chiral disilicide NbSi2 and TaSi2. As previously demonstrated in the experiments using single crystals of NbSi2 and TaSi2, electrical transport measurements allow detection of direct and inverse signals associated with the chirality-induced spin polarization even in the chiral polycrystals. Spin polarization signals also appear in nonlocal measurements, in which charge current flows only in the area millimeters away from the detection electrode. These data mean that the spin polarization phenomena occur regardless of the presence of crystalline grains in the polycrystals, indicating a robustness and resilience of the chirality-induced spin polarization. On the basis of the experimental data, we found that the sum rule holds for the spin transport signals. A distribution of handedness over the samples was determined on average in the polycrystals. While the mechanism of preserving the spin polarization over millimeters remains to be clarified, the present study may open up prospects of spin control and manipulation over macroscopic length scales using chiral materials.

1.
B.
Göhler
,
V.
Hamelbeck
,
T. Z.
Markus
,
M.
Kettner
,
G. F.
Hanne
,
Z.
Vager
,
R.
Naaman
, and
H.
Zacharias
,
Science
331
,
894
(
2011
).
2.
Z.
Xie
,
T. Z.
Markus
,
S. R.
Cohen
,
Z.
Vager
,
R.
Gutierrez
, and
R.
Naaman
,
Nano Lett.
11
,
4652
(
2011
).
3.
R.
Naaman
and
D. H.
Waldeck
,
J. Phys. Chem. Lett.
3
,
2178
2187
(
2012
).
4.
R.
Naaman
and
D. H.
Waldeck
,
Annu. Rev. Phys. Chem.
66
,
263
281
(
2015
).
5.
D. H.
Waldeck
,
R.
Naaman
, and
Y.
Paltiel
,
APL Mater.
9
,
040902
(
2021
).
6.
R. A.
Rosenberg
,
J. M.
Symonds
,
V.
Kalyanaraman
,
T.
Markus
,
T. M.
Orlando
,
R.
Naaman
,
E. A.
Medina
,
F. A.
López
, and
V.
Mujica
,
J. Phys. Chem. C
117
,
22307
(
2013
).
7.
K. S.
Kumar
,
N.
Kantor-Uriel
,
S. P.
Mathew
,
R.
Guliamov
, and
R. A.
Naaman
,
Phys. Chem. Chem. Phys.
15
,
18357
(
2013
).
8.
O. B.
Dor
,
S.
Yochelis
,
S. P.
Mathew
,
R.
Naaman
, and
Y.
Paltiel
,
Nat. Commun.
4
,
2256
(
2013
).
9.
M.
Kettner
,
B.
Göhler
,
H.
Zacharias
,
D.
Mishra
,
V.
Kiran
,
R.
Naaman
,
C.
Fontanesi
,
D. H.
Waldeck
,
S.
Sȩk
,
J.
Pawłowski
, and
J.
Juhaniewicz
,
J. Phys. Chem. C
119
,
14542
(
2015
).
10.
A. C.
Aragonès
,
E.
Medina
,
M.
Ferrer-Huerta
,
N.
Gimeno
,
M.
Teixidó
,
J. L.
Palma
,
N.
Tao
,
J. M.
Ugalde
,
E.
Giralt
,
I.
Díez-Pérez
, and
V.
Mujica
,
Small
13
,
1602519
(
2017
).
11.
G.
Koplovitz
,
D.
Primc
,
D. O.
Ben
,
S.
Yochelis
,
D.
Rotem
,
D.
Porath
, and
Y.
Paltiel
,
Adv. Mater.
29
,
1606748
(
2017
).
12.
F.
Tassinari
,
D. R.
Jayarathna
,
N.
Kantor-Uriel
,
K. L.
Davis
,
V.
Varade
,
C.
Achim
, and
R.
Naaman
,
Adv. Mater.
30
,
1706423
(
2018
).
13.
V.
Varade
,
T.
Markus
,
K.
Vankayala
,
N.
Friedman
,
M.
Sheves
,
D. H.
Waldeck
, and
R.
Naaman
,
Phys. Chem. Chem. Phys.
20
,
1091
(
2018
).
14.
W.
Zhang
,
J.
Li
,
G.
Lu
,
H.
Guana
, and
L.
Haoa
,
Chem. Commun.
55
,
13390
(
2019
).
15.
A.
Ziv
,
A.
Saha
,
H.
Alpern
,
N.
Sukenik
,
L. T.
Baczewski
,
S.
Yochelis
,
M.
Reches
, and
Y.
Paltiel
,
Adv. Mater.
31
,
1904206
(
2019
).
16.
S.
Mishra
,
S.
Pirbadian
,
A. K.
Mondal
,
M. Y.
El-Naggar
, and
R.
Naaman
,
J. Am. Chem. Soc.
141
,
19198
(
2019
).
17.
V.
Kiran
,
S. P.
Mathew
,
S. R.
Cohen
,
I. H.
Delgado
,
J.
Lacour
, and
R.
Naaman
,
Adv. Mater.
28
,
1957
(
2016
).
18.
M.
Kettner
,
V. V.
Maslyuk
,
D.
Nurenberg
,
J.
Seibel
,
R.
Gutierrez
,
G.
Cuniberti
,
K.
Ernst
, and
H.
Zacharias
,
J. Phys. Chem. Lett.
9
,
2025
(
2018
).
19.
M.
Suda
,
Y.
Thathong
,
V.
Promarak
,
H.
Kojima
,
M.
Nakamura
,
T.
Shiraogawa
,
M.
Ehara
, and
H. M.
Yamamoto
,
Nat. Commun.
10
,
2455
(
2019
).
20.
C.
Kulkarni
,
A. K.
Mondal
,
T. K.
Das
,
G.
Grinbom
,
F.
Tassinari
,
M. F. J.
Mabesoone
,
E. W.
Meijer
, and
R.
Naaman
,
Adv. Mater.
32
,
1904965
(
2020
).
21.
A.
Inui
,
R.
Aoki
,
Y.
Nishiue
,
K.
Shiota
,
Y.
Kousaka
,
H.
Shishido
,
D.
Hirobe
,
M.
Suda
,
J.
Ohe
,
J.
Kishine
,
H.
Yamamoto
, and
Y.
Togawa
,
Phys. Rev. Lett.
124
,
166602
(
2020
).
22.
Y.
Nabei
,
D.
Hirobe
,
Y.
Shimamoto
,
K.
Shiota
,
A.
Inui
,
Y.
Kousaka
,
Y.
Togawa
, and
H. M.
Yamamoto
,
Appl. Phys. Lett.
117
,
052408
(
2020
).
23.
K.
Shiota
,
A.
Inui
,
Y.
Hosaka
,
R.
Amano
,
Y.
Ōnuki
,
M.
Hedo
,
T.
Nakama
,
D.
Hirobe
,
J.
Ohe
,
J.
Kishine
,
H. M.
Yamamoto
,
H.
Shishido
, and
Y.
Togawa
,
Phys. Rev. Lett.
127
,
126602
(
2021
).
24.
H.
Sakamoto
,
A.
Fujii
,
K.
Tanaka
, and
H.
Inui
,
Acta Mater.
53
,
41
(
2005
).
25.
S. O.
Valenzuela
and
M.
Tinkham
,
Naure
442
,
176
(
2006
).
26.
E.
Saitoh
,
M.
Ueda
,
H.
Miyajima
, and
G.
Tatara
,
Appl. Phys. Lett.
88
,
182509
(
2006
).
27.
T.
Kimura
,
Y.
Otani
,
T.
Sato
,
S.
Takahashi
, and
S.
Maekawa
,
Phys. Rev. Lett.
98
,
156601
(
2007
).
28.
Y.
Ōnuki
,
A.
Nakamura
,
T.
Uejo
,
A.
Teruya
,
M.
Hedo
,
T.
Nakama
,
F.
Honda
, and
H.
Harima
,
J. Phys. Soc. Jpn.
83
,
061018
(
2014
).

Supplementary Material

You do not currently have access to this content.