Silicon (Si) is an efficient n-type dopant in gallium oxide (Ga2O3)—an ultra-wide bandgap semiconductor promising in a number of applications. However, in spite of the technological importance for device fabrication, the activation energy for Si diffusion in Ga2O3 is missing in the literature. In the present work, we do such measurements in ion implanted monoclinic β-Ga2O3 samples employing anneals in air ambient, also admitting the influence of potential ion beam induced phase modifications on diffusion. Importantly, we show that Si diffusion in β-Ga2O3 fits with the concentration dependent diffusion model, involving neutral and single negatively charged point defects to mediate the process; so that we assumed gallium vacancies in the corresponding charge states to assist Si diffusion in β-Ga2O3 with activation energies of 3.2 ± 0.3 and 5.4 ± 0.4 eV, respectively. Moreover, we also found that a preexisting phase modified surface layer efficiently suppressed Si diffusion in β-Ga2O3 for temperatures up to 1000 °C.

1.
L.
Shao
,
J.
Liu
,
Q. Y.
Chen
, and
W.-K.
Chu
, “
Boron diffusion in silicon: The anomalies and control by point defect engineering
,”
Mater. Sci. Eng. R
42
,
65
(
2003
).
2.
A.
Chroneos
and
H.
Bracht
, “
Diffusion of n-type dopants in germanium
,”
Appl. Phys. Rev.
1
,
011301
(
2014
).
3.
A. G.
Italyantsev
and
A. Y.
Kuznetsov
, “
Excess vacancy generation in silicon during surface silicide formation
,”
Appl. Surf. Sci.
73
,
203
(
1993
).
4.
A.
Azarov
,
V.
Venkatachalapathy
,
Z.
Mei
,
L.
Liu
,
X.
Du
,
A.
Galeckas
,
E.
Monakhov
,
B. G.
Svensson
, and
A.
Kuznetsov
, “
Self-diffusion measurements in isotopic heterostructures of undoped and in situ doped ZnO: Zinc vacancy energetics
,”
Phys. Rev. B
94
,
195208
(
2016
).
5.
S. J.
Pearton
,
J.
Yang
,
P. H.
Cary
,
F.
Ren
,
J.
Kim
,
M. J.
Tadjer
, and
M. A.
Mastro
, “
A review of Ga2O3 materials, processing, and devices
,”
Appl. Phys. Rev.
5
,
011301
(
2018
).
6.
A. T.
Neal
,
S.
Mou
,
S.
Rafique
,
H.
Zhao
,
E.
Ahmadi
,
J. S.
Speck
,
K. T.
Stevens
,
J. D.
Blevins
,
D. B.
Thomson
,
N.
Moser
,
K. D.
Chabak
, and
G. H.
Jessen
, “
Donors and deep acceptors in β-Ga2O3
,”
Appl. Phys. Lett.
113
,
062101
(
2018
).
7.
M.
Baldini
,
M.
Albrecht
,
A.
Fiedler
,
K.
Irmscher
,
R.
Schewski
, and
G.
Wagner
, “
Si- and Sn-doped homoepitaxial β-Ga2O3 layers grown by MOVPE on (010)-oriented substrates
,”
ECS J. Solid State Sci. Technol.
6
,
Q3040
(
2017
).
8.
S.
Lany
, “
Defect phase diagram for doping of Ga2O3
,”
Appl. Phys. Lett. Mater.
6
,
046103
(
2018
).
9.
J. B.
Varley
,
J. R.
Weber
,
A.
Janotti
, and
C. G.
Van de Walle
, “
Oxygen vacancies and donor impurities in β-Ga2O3
,”
Appl. Phys. Lett.
97
,
142106
(
2010
).
10.
K.
Sasaki
,
M.
Higashiwaki
,
A.
Kuramata
,
T.
Masui
, and
S.
Yamakoshi
, “
Si-ion implantation doping in β-Ga2O3 and its application to fabrication of low-resistance Ohmic contacts
,”
Appl. Phys. Express
6
,
086502
(
2013
).
11.
M.
Higashiwaki
,
K.
Sasaki
,
M. H.
Wong
,
T.
Kamimura
,
D.
Krishnamurthy
,
A.
Kuramata
,
T.
Masui
, and
S.
Yamakoshi
, “
Depletion-mode Ga2O3 MOSFETs on β-Ga2O3 (010) substrates with Si-ion-implanted channel and contacts
,” in
Technical Digest, IEEE International Electron Devices Meeting 28.7.1
(IEEE,
2013
).
12.
M. H.
Wong
,
K.
Goto
,
H.
Murakami
,
Y.
Kumagai
, and
M.
Higashiwaki
, “
Current aperture vertical β-Ga2O3 MOSFETs fabricated by N- and Si-ion implantation doping
,”
IEEE Electron Device Lett.
40
,
431
(
2019
).
13.
M. J.
Tadjer
,
C.
Fares
,
N. A.
Mahadik
,
J. A.
Freitas
, Jr.
,
D.
Smith
,
R.
Sharma
,
M. E.
Law
,
F.
Ren
,
S. J.
Pearton
, and
A.
Kuramata
, “
Damage recovery and dopant diffusion in Si and Sn ion implanted β-Ga2O3
,”
ECS J. Solid State Sci. Technol.
8
,
Q3133
(
2019
).
14.
R.
Sharma
,
M. E.
Law
,
C.
Fares
,
M.
Tadjer
,
F.
Ren
,
A.
Kuramata
, and
S. J.
Pearton
, “
The role of annealing ambient on diffusion of implanted Si in β-Ga2O3
,”
AIP Adv.
9
,
085111
(
2019
).
15.
A.
Azarov
,
C.
Bazioti
,
V.
Venkatachalapathy
,
P.
Vajeeston
,
E.
Monakhov
, and
A.
Kuznetsov
, “
Disorder-induced ordering in gallium oxide polymorphs
,” arXiv:2109.00242.
16.
J. F.
Ziegler
,
M. D.
Ziegler
, and
J. P.
Biersack
, “
SRIM—the stopping and range of ions in matter (2010)
,”
Nucl. Instrum. Methods Phys. Res., B
268
,
1818
(
2010
).
17.
R. B.
Fair
and
J. C. C.
Tsai
, “
A quantitative model for the diffusion of phosphorus in silicon and the emitter dip effect
,”
J. Electrochem. Soc.
124
,
1107
(
1977
).
18.
T.
Onuma
,
S.
Saito
,
K.
Sasaki
,
K.
Goto
,
T.
Masui
,
T.
Yamaguchi
,
T.
Honda
,
A.
Kuramata
, and
M.
Higashiwaki
, “
Temperature-dependent exciton resonance energies and their correlation with IR-active optical phonon modes in β-Ga2O3 single crystals
,”
Appl. Phys. Lett.
108
,
101904
(
2016
).
19.
See http://www.pdesolutions.com for the simulations performed numerically using FlexPDE software (PDE Solutions, Inc.)
20.
A.
Kyrtsos
,
M.
Matsubara
, and
E.
Bellotti
, “
Migration mechanisms and diffusion barriers of vacancies in Ga2O3
,”
Phys Rev. B
95
,
245202
(
2017
).
21.
E.
Chikoidze
,
A.
Fellous
,
A.
Perez-Tomas
,
G.
Sauthier
,
T.
Tchelidze
,
C.
Ton-That
,
T. T.
Huynh
,
M.
Phillips
,
S.
Russell
,
M.
Jennings
,
B.
Berini
,
F.
Jomard
, and
Y.
Dumont
, “
P-type β-gallium oxide: A new perspective for power and optoelectronic devices
,”
Mater. Today Phys.
3
,
118
(
2017
).
22.
E. A.
Anber
,
D.
Foley
,
A. C.
Lang
,
J.
Nathaniel
,
J. L.
Hart
,
M. J.
Tadjer
,
K. D.
Hobart
,
S.
Pearton
, and
M. L.
Taheri
, “
Structural transition and recovery of Ge implanted β-Ga2O3
,”
Appl. Phys. Lett.
117
,
152101
(
2020
).
23.
A.
Azarov
,
V.
Venkatachalapathy
,
E. V.
Monakhov
, and
A. Yu.
Kuznetsov
, “
Dominating migration barrier for intrinsic defects in gallium oxide: Dose-rate effect measurements
,”
Appl. Phys. Lett.
118
,
232101
(
2021
).
24.
H.
Peelaers
,
J. L.
Lyons
,
J. B.
Varley
, and
C. G.
Van de Walle
, “
Deep acceptors and their diffusion in Ga2O3
,”
APL Mater.
7
,
022519
(
2019
).

Supplementary Material

You do not currently have access to this content.