In this paper, we report the direct growth of ultra-wide bandgap GeO2 film on the m-plane sapphire substrate by pulsed laser deposition. Raman scattering and x-ray diffraction measurements confirm that the obtained GeO2 film has a (001)-oriented rutile structure mixed with the amorphous phase, and the film has an out-of-plane strain of –0.28% along the c direction. Transmittance spectra and x-ray photoelectron spectroscopy measurements determine that the transparent GeO2 film has an ultra-wide bandgap of about 5.1 eV. Room temperature photoluminescence spectrum exhibits a broad blue–green emission band dominated by two peaks at about 2.4 and 2.8 eV. With the temperature decreasing to 21 K, the peak intensities increase exponentially accompanied by a slight blue-shift in the peak position. We believe that these findings will pave the way for applications of the wide-bandgap GeO2 film in power and optoelectronic devices.

1.
J. Y.
Tsao
,
S.
Chowdhury
,
M. A.
Hollis
,
D.
Jena
,
N. M.
Johnson
,
K. A.
Jones
,
R. J.
Kaplar
,
S.
Rajan
,
C. G.
Van de Walle
,
E.
Bellotti
,
C. L.
Chua
,
R.
Collazo
,
M. E.
Coltrin
,
J. A.
Cooper
,
K. R.
Evans
,
S.
Graham
,
T. A.
Grotjohn
,
E. R.
Heller
,
M.
Higashiwaki
,
M. S.
Islam
,
P. W.
Juodawlkis
,
M. A.
Khan
,
A. D.
Koehler
,
J. H.
Leach
,
U. K.
Mishra
,
R. J.
Nemanich
,
R. C. N.
Pilawa-Podgurski
,
J. B.
Shealy
,
Z.
Sitar
,
M. J.
Tadjer
,
A. F.
Witulski
,
M.
Wraback
, and
J. A.
Simmons
, “
Ultrawide-bandgap semiconductors: Research opportunities and challenges
,”
Adv. Electron. Mater.
4
,
1600501
(
2018
).
2.
F.
Lloret
,
D.
Eon
,
E.
Bustarret
,
F.
Donatini
, and
D.
Araujo
, “
Selectively boron doped homoepitaxial diamond growth for power device applications
,”
Appl. Phys. Lett.
118
,
023504
(
2021
).
3.
M.
Kneissl
,
T.-Y.
Seong
,
J.
Han
, and
H.
Amano
, “
The emergence and prospects of deep-ultraviolet light-emitting diode technologies
,”
Nat. Photonics
13
,
233
244
(
2019
).
4.
D.
Guo
,
Y.
Su
,
H.
Shi
,
P.
Li
,
N.
Zhao
,
J.
Ye
,
S.
Wang
,
A.
Liu
,
Z.
Chen
,
C.
Li
, and
W.
Tang
, “
Self-powered ultraviolet photodetector with superhigh photoresponsivity (3.05A/W) based on the GaN/Sn:Ga2O3 pn junction
,”
ACS Nano
12
,
12827
12835
(
2018
).
5.
S.
Chae
,
K.
Mengle
,
K.
Bushick
,
J.
Lee
,
N.
Sanders
,
Z.
Deng
,
Z.
Mi
,
P. F. P.
Poudeu
,
H.
Paik
,
J. T.
Heron
, and
E.
Kioupakis
, “
Toward the predictive discovery of ambipolarly dopable ultra-wide-band-gap semiconductors: The case of rutile GeO2
,”
Appl. Phys. Lett.
118
,
260501
(
2021
).
6.
M.
Stapelbroek
and
B. D.
Evans
, “
Exciton structure in the U.V.-absorption edge of tetragonal GeO2
,”
Solid State Commun.
25
,
959
962
(
1978
).
7.
C. A.
Niedermeier
,
K.
Ide
,
T.
Katase
,
H.
Hosono
, and
T.
Kamiya
, “
Shallow valence band of rutile GeO2 and P-type doping
,”
J. Phys. Chem. C
124
,
25721
25728
(
2020
).
8.
K. A.
Mengle
,
S.
Chae
, and
E.
Kioupakis
, “
Quasiparticle band structure and optical properties of rutile GeO2, an ultra-wide-band-gap semiconductor
,”
J. Appl. Phys.
126
,
085703
(
2019
).
9.
S.
Chae
,
J.
Lee
,
K. A.
Mengle
,
J. T.
Heron
, and
E.
Kioupakis
, “
Rutile GeO2: An ultrawide-band-gap semiconductor with ambipolar doping
,”
Appl. Phys. Lett.
114
,
102104
(
2019
).
10.
K.
Bushick
,
K. A.
Mengle
,
S.
Chae
, and
E.
Kioupakis
, “
Electron and hole mobility of rutile GeO2 from first principles: An ultrawide-bandgap semiconductor for power electronics
,”
Appl. Phys. Lett.
117
,
182104
(
2020
).
11.
S.
Chae
,
K. A.
Mengle
,
R.
Lu
,
A.
Olvera
,
N.
Sanders
,
J.
Lee
,
P. F. P.
Poudeu
,
J. T.
Heron
, and
E.
Kioupakis
, “
Thermal conductivity of rutile germanium dioxide
,”
Appl. Phys. Lett.
117
,
102106
(
2020
).
12.
S.
Witanachchi
and
P. J.
Wolf
, “
Activated reactive laser deposition of GeO2 films
,”
J. Appl. Phys.
76
,
2185
(
1994
).
13.
N.
Terakado
and
K.
Tanaka
, “
Solids photo-induced phenomena in sputtered GeO2 films
,”
J. Non-Cryst. Solids
351
,
54
(
2005
).
14.
A.
Chiasera
,
C.
Macchi
,
S.
Mariazzi
,
S.
Valligatla
,
L.
Lunelli
,
C.
Pederzolli
,
D. N.
Rao
,
A.
Somoza
,
R. S.
Brusa
, and
M.
Ferrari
, “
CO2 laser irradiation of GeO2 planar waveguide fabricated by rf-sputtering
,”
Opt. Mater. Express
3
,
1561
(
2013
).
15.
N. R.
Murphy
,
J. T.
Grant
,
L.
Sun
,
J. G.
Jones
,
R.
Jakubiak
,
V.
Shutthanandan
, and
C. V.
Ramana
, “
Correlation between optical properties and chemical composition of sputter-deposited germanium oxide (GeOx) films
,”
Opt. Mater.
36
,
1177
(
2014
).
16.
S.
Chae
,
H.
Paik
,
N. M.
Vu
,
E.
Kioupakis
, and
J. T.
Heron
, “
Epitaxial stabilization of rutile germanium oxide thin film by molecular beam epitaxy
,”
Appl. Phys. Lett.
117
,
072105
(
2020
).
17.
H.
Takane
and
K.
Kaneko
, “
Establishment of a growth route of crystallized rutile GeO2 thin film (≧1 μm/h) and its structural properties
,”
Appl. Phys. Lett.
119
,
062104
(
2021
).
18.
F. B.
Zhang
,
K.
Saito
,
T.
Tanaka
,
M.
Nishio
, and
Q. X.
Guo
, “
Structural and optical properties of Ga2O3 films on sapphire substrates by pulsed laser deposition
,”
J. Cryst. Growth
387
,
96
100
(
2014
).
19.
G.
Deng
,
Y.
Huang
,
Z.
Chen
,
C.
Pan
,
K.
Saito
,
T.
Tanaka
, and
Q.
Guo
, “
Yellow emission from vertically integrated Ga2O3 doped with Er and Eu electroluminescent film
,”
J. Lumin.
235
,
118051
(
2021
).
20.
G.
Deng
,
K.
Saito
,
T.
Tanaka
, and
Q.
Guo
, “
Improvement of sensing sensitivity based on green emissions from Er-doped (AlGa)2O3 films
,”
J. Lumin.
232
,
117879
(
2021
).
21.
J.
Moulder
,
W.
Stickle
,
P.
Sobol
, and
K.
Bomben
,
Handbook of X‐Ray Photoelectron Spectroscopy
, edited by
J.
Chastian
(
PerkinElmer Corporation
,
Eden Prairie, MN
,
1993
), p.
92
.
22.
R.
Kaindl
,
D. M.
Többens
,
S.
Penner
,
T.
Bielz
,
S.
Soisuwan
, and
B.
Klötzer
, “
Quantum mechanical calculations of the vibrational spectra of quartz- and rutile-type GeO2
,”
Phys. Chem. Miner.
39
,
47
55
(
2012
).
23.
M.
Madon
,
P.
Gillet
,
C.
Julien
, and
G. D.
PriceA
, “
Vibrational study of phase transitions among the GeO2 polymorphs
,”
Phys. Chem. Miner.
18
,
7
18
(
1991
).
24.
A.
Sanson
,
G. S.
Pokrovski
,
M.
Giarola
, and
G.
Mariotto
, “
Vibrational dynamics of rutile-type GeO2 from micro-Raman spectroscopy experiments and first-principles calculations
,”
Europhys. Lett.
109
,
26007
(
2015
).
25.
A.
Lignie
,
P.
Hermet
,
G.
Fraysse
, and
P.
Armand
, “
Raman study of α-quartz-type Ge1−xSixO2 (0 < x ≤ 0.067) single crystals for piezoelectric applications
,”
RSC Adv.
5
,
55795
55800
(
2015
).
26.
W. H.
Baur
and
A. A.
Khan
, “
Ruffle-type compounds. IV. SiO2, GeO2 and a comparison with other Ruffle-type structures
,”
Acta Crystallogr., Sect. B
27
,
2133
2139
(
1971
).
27.
S.
Zhao
,
Z.
Fu
, and
Q.
Qin
, “
A solid-state electrolyte lithium phosphorus oxynitride film prepared by pulsed laser deposition
,”
Thin Solid Films
415
,
108
113
(
2002
).
28.
H.
Yanagi
,
C.
Sato
,
Y.
Kimura
,
I.
Suzuki
,
T.
Omata
,
T.
Kamiya
, and
H.
Hosono
, “
Widely bandgap tunable amorphous Cd–Ga–O oxide semiconductors exhibiting electron mobilities ≥ 10 cm2 V−1 s−1
,”
Appl. Phys. Lett.
106
,
082106
(
2015
).
29.
J.
Bruncko
,
A.
Vincze
,
M.
Netrvalova
,
P.
Šutta
,
D.
Hasko
, and
M.
Michalka
, “
Annealing and recrystallization of amorphous ZnO thin films deposited under cryogenic conditions by pulsed laser deposition
,”
Thin Solid Films
520
,
866
870
(
2011
).
30.
S. S.
Kumar
,
E. J.
Rubio
,
M.
Noor-A-Alam
,
G.
Martinez
,
S.
Manandhar
,
V.
Shutthanandan
,
S.
Thevuthasan
, and
C. V.
Ramana
, “
Structure, morphology, and optical properties of amorphous and nanocrystalline gallium oxide thin films
,”
J. Phys. Chem. C
117
,
4194
4200
(
2013
).
31.
F.
Zhang
,
K.
Saito
,
T.
Tanaka
,
M.
Nishio
,
M.
Arita
, and
Q.
Guo
, “
Wide bandgap engineering of (AlGa)2O3 films
,”
Appl. Phys. Lett.
105
,
162107
(
2014
).
32.
G.
Deng
,
F.
Zhang
,
K.
Saito
,
T.
Tanaka
,
M.
Arita
, and
Q.
Guo
, “
Enhanced green emission from Er-doped (AlGa)2O3 films grown by pulsed laser deposition
,”
Jpn. J. Appl. Phys.
59
,
051007
(
2020
).
33.
A.
Samanta
,
M.
Jain
, and
A. K.
Singh
, “
Ultra-sensitive pressure dependence of bandgap of rutile-GeO2 revealed by many body perturbation theory
,”
J. Chem. Phys.
143
,
064703
(
2015
).
34.
T.
Lange
,
W.
Njoroge
,
H.
Weis
,
M.
Beckers
, and
M.
Wuttig
, “
Physical properties of thin GeO2 films produced by reactive DC magnetron sputtering
,”
Thin Solid Films
365
,
82
89
(
2000
).
35.
S. L.
Shinde
and
K. K.
Nanda
, “
Thermal oxidation strategy for the synthesis of phase-controlled GeO2 and photoluminescence characterization
,”
CrystEngComm
15
,
1043
1046
(
2013
).
36.
A.
Trukhin
,
M.
Kink
,
Y.
Maksimov
,
J.
Jansons
, and
R.
Kink
, “
Luminescence of GeO2 glass, rutile-like and α-quartz-like crystals
,”
J. Non-Cryst. Solids
352
,
160
166
(
2006
).
37.
V. B.
Mykhaylyk
,
H.
Kraus
,
V.
Kapustianyk
, and
M.
Rudko
, “
Low temperature scintillation properties of Ga2O3
,”
Appl. Phys. Lett.
115
,
081103
(
2019
).
38.
Z.
Liu
,
Y.
Huang
,
X.
Yi
,
B.
Fu
,
G.
Yuan
,
J.
Wang
,
J.
Li
, and
Y.
Zhang
, “
Analysis of photoluminescence thermal quenching: Guidance for the design of highly effective p-type doping of nitrides
,”
Sci. Rep.
6
,
32033
(
2016
).
39.
Y. P.
Varshni
, “
Temperature dependence of the energy gap in semiconductors
,”
Physics
34
,
149
154
(
1967
).
You do not currently have access to this content.