A surface acoustic wave (SAW) is utilized in diverse fields ranging from physics, engineering, to biology for transducing, sensing, and processing various signals. Optical measurement of the SAW provides valuable information since the amplitude and the phase of the displacement field can be measured locally with the resolution limited by the spot size of the optical beam. So far, optical measurement techniques rely on modulation of the optical path, phase, or diffraction associated with SAWs. Here, we demonstrate that SAWs can be measured with an optical polarimeter. We show that the slope of the periodically tilting surface due to the coherently driven SAW is translated into the angle of polarization rotation, which can be straightforwardly calibrated when polarimeters work in the shot-noise-limited regime. The polarimetric measurement of SAWs is, thus, beneficial for quantitative studies of SAW-based technologies.

1.
L. D.
Landau
and
E. M.
Lifshitz
,
Theory of Elasticity
, 3rd ed. (
Butterworth-Heinenann
,
Oxford
,
1986
).
2.
K. S.
Thorne
and
R. D.
Blandford
,
Modern Classical Physics
(
Princeton University Press
,
Princeton
,
2017
).
3.
C. C. W.
Ruppel
, “
Acoustic wave filter technology—A review
,”
IEEE Trans. Ultrasonics, Ferroelectr., Frequency Control
64
,
1390
1400
(
2017
).
4.
F. Z.
Bi
and
B. P.
Barber
, “
Bulk acoustic wave RF technology
,”
IEEE Microwave Mag.
9
,
65
80
(
2008
).
5.
C.
Campbell
,
Surface Acoustic Wave Devices for Mobile and Wireless Communications
(
Academic Press
,
1998
).
6.
K.
Länge
,
B. E.
Rapp
, and
M.
Rapp
, “
Surface acoustic wave biosensors: A review
,”
Anal. Bioanal. Chem.
391
,
1509
1519
(
2008
).
7.
M.
Rocha-Gaso
,
C.
March-Iborra
,
A.
Montoya-Baides
, and
A.
Arnau-Vives
, “
Surface generated acoustic wave biosensors for the detection of pathogens: A review
,”
Sensors
9
,
5740
5769
(
2009
).
8.
S. I.
Zida
,
Y. D.
Lin
, and
Y. L.
Khung
, “
Current trends on surface acoustic wave biosensors
,”
Adv. Mater. Technol.
6
,
2001018
(
2021
).
9.
M. J. A.
Schuetz
,
E. M.
Kessler
,
G.
Giedke
,
L. M. K.
Vandersypen
,
M. D.
Lukin
, and
J. I.
Cirac
, “
Universal quantum transducers based on surface acoustic waves
,”
Phys. Rev. X
5
,
031031
(
2015
).
10.
B. A.
Moores
,
L. R.
Sletten
,
J. J.
Viennot
, and
K. W.
Lehnert
, “
Cavity quantum acoustic device in the multimode strong coupling regime
,”
Phys. Rev. Lett.
120
,
227701
(
2018
).
11.
K. J.
Satzinger
,
Y. P.
Zhong
,
H.-S.
Chang
,
G. A.
Peairs
,
A.
Bienfait
,
M.-H.
Chou
,
A. Y.
Cleland
,
C. R.
Conner
,
É.
Dumur
,
J.
Grebel
,
I.
Gutierrez
,
B. H.
November
,
R. G.
Povey
,
S. J.
Whiteley
,
D. D.
Awschalom
,
D. I.
Schuster
, and
A. N.
Cleland
, “
Quantum control of surface acoustic-wave phonons
,”
Nature
563
,
661
665
(
2018
).
12.
A.
Noguchi
,
R.
Yamazaki
,
Y.
Tabuchi
, and
Y.
Nakamura
, “
Single-photon quantum regime of artificial radiation pressure on a surface acoustic wave resonator
,”
Nat. Commun.
11
,
1183
(
2020
).
13.
R.
Manenti
,
A. F.
Kockum
,
A.
Patterson
,
T.
Behrle
,
J.
Rahamim
,
G.
Tancredi
,
F.
Nori
, and
P. J.
Leek
, “
Circuit quantum acoustodynamics with surface acoustic waves
,”
Nat. Commun.
8
,
975
(
2017
).
14.
M.
Matsuo
,
J.
Ieda
,
K.
Harii
,
E.
Saitoh
, and
S.
Maekawa
, “
Mechanical generation of spin current by spin-rotation coupling
,”
Phys. Rev. B
87
,
180402
(
2013
).
15.
J.
Ieda
,
M.
Matsuo
, and
S.
Maekawa
, “
Theory of mechanical spin current generation via spin-rotation coupling
,”
Solid State Commun.
198
,
52
58
(
2014
).
16.
D.
Kobayashi
,
T.
Yoshikawa
,
M.
Matsuo
,
R.
Iguchi
,
S.
Maekawa
,
E.
Saitoh
, and
Y.
Nozaki
, “
Spin current generation using a surface acoustic wave generated via spin-rotation coupling
,”
Phys. Rev. Lett.
119
,
077202
(
2017
).
17.
Y.
Kurimune
,
M.
Matsuo
, and
Y.
Nozaki
, “
Observation of gyromagnetic spin wave resonance in NiFe films
,”
Phys. Rev. Lett.
124
,
217205
(
2020
).
18.
D. A.
Bozhko
,
V. I.
Vasyuchka
,
A. V.
Chumak
, and
A. A.
Serga
, “
Magnon-phonon interactions in magnon spintronics
,”
Low Temp. Phys.
46
,
383
399
(
2020
).
19.
M.
Weiler
,
H.
Huebl
,
F. S.
Goerg
,
F. D.
Czeschka
,
R.
Gross
, and
S. T. B.
Gönnenwein
, “
Spin pumping with coherent elastic waves
,”
Phys. Rev. Lett.
108
,
176601
(
2012
).
20.
K. A.
Hashimoto
, “
Laser probe based on a sagnac interferometer with fast mechanical scan for RF surface and bulk acoustic wave devices
,”
IEEE Trans. Ultrasonics, Ferroelectr., Frequency Control
58
,
187
194
(
2011
).
21.
J. V.
Knuuttila
,
P. T.
Tikka
, and
M. M.
Salomaa
, “
Scanning Michelson interferometer for imaging surface acoustic wave fields
,”
Opt. Lett.
25
,
613
615
(
2000
).
22.
W.
Fu
,
Z.
Shen
,
Y.
Xu
,
C.-H.
Zou
,
R.
Cheng
,
X.
Han
, and
H. X.
Tang
, “
Phononic integrated circuitry and spin–orbit interaction of phonons
,”
Nat. Commun.
10
,
2743
(
2019
).
23.
H.
Kamizuma
,
L.
Yang
,
T.
Omori
,
K.
Hashimoto
, and
M.
Yamaguchi
, “
High-speed laser probing system for surface acoustic wave devices based on knife-edge method
,”
Jpn. J. Appl. Phys., Part 1
44
,
4535
(
2005
).
24.
R. J.
Hallermeier
and
W. G.
Mayer
, “
Light diffraction by ultrasonic surface waves of arbitrary standing-wave ratio
,”
J. Acoust. Soc. Am.
47
,
1236
1240
(
1970
).
25.
C.-Y.
You
and
S.-C.
Shin
, “
Derivation of simplified analytic formulae for magneto-optical Kerr effects
,”
Appl. Phys. Lett.
69
,
1315
1317
(
1996
).

Supplementary Material

You do not currently have access to this content.