In this work, a metastable face-centered cubic High Entropy Alloy (HEA) Fe35.0Co28.7Ni24.8Cr1.1Al1.3V4.5Ti1.2Nb2.8Si0.6 was found to exhibit significantly suppressed thermal expansion coefficient (6.0 ppm/K) and stable Young's modulus over a wide temperature range. Experimental and theoretical analyses suggest that both Invar and Elinvar effects were present; in addition, the metastability of this alloy with respect to the first-order phase transition and the magnetic second-order phase transition led to abrupt changes in thermal expansion behavior. The first-order phase transition was associated with the formation of a plate-like D019 phase. The magnetic second-order phase transition decreased the Invar effect and the Elinvar effect and resulted in a significant magnetic entropy difference (−3.12 J kg−1 K−1) in this HEA of interest.

1.
R.
Roy
,
D. K.
Agrawal
, and
H. A.
McKinstry
, “
Very low thermal expansion coefficient materials
,”
Annu. Rev. Mater. Sci.
19
(
1
),
59
81
(
1989
).
2.
E.
Wasserman
, “
Invar: Moment-volume instabilities in transition metals and alloys
,”
Handb. Ferromagn. Mater.
5
,
237
322
(
1990
).
3.
E. H.
Megchiche
,
C.
Mijoule
, and
M.
Amarouche
, “
First principles calculations of vacancy–vacancy interactions in nickel: Thermal expansion effects
,”
J. Phys.: Condens. Matter
22
(
48
),
485502
(
2010
).
4.
A. A.
Quong
and
A. Y.
Liu
, “
First-principles calculations of the thermal expansion of metals
,”
Phys. Rev. B
56
(
13
),
7767
(
1997
).
5.
J.
Elmer
,
D.
Olson
, and
D.
Matlock
, “
Thermal expansion characteristics of stainless steel weld metal
,”
Weld. J.
61
(
9
),
293
(
1982
).
6.
C. É.
Guillaume
, “
Recherches sur les aciers au nickel. Dilatations aux temperatures elevees; resistance electrique
,”
C. R. Acad. Sci
125
(
235
),
18
(
1897
).
7.
D. A. J. R.
Davis
,
ASM Specialty Handbook: Nickel, Cobalt, and Their Alloys
(
ASM International Materials Park
,
OH
,
2000
), pp.
96
100
.
8.
M.
van Schilfgaarde
,
I.
Abrikosov
, and
B.
Johansson
, “
Origin of the Invar effect in iron–nickel alloys
,”
Nature
400
(
6739
),
46
(
1999
).
9.
J. R.
Davis
, Nickel, Cobalt and Their Alloys, ASM Specialty Handbook (
ASM International
,
Materials Park
2000
).
10.
E.
Wassermann
, “
The invar problem
,”
J. Magn. Magn. Mater.
100
(
1–3
),
346
362
(
1991
).
11.
Y.
Zhang
,
X.
Tian
,
Z.
Qin
, and
H.
Jiang
, “
Temperature compensating Elinvar character in Fe–Mn–Si alloys
,”
J. Magn. Magn. Mater.
324
(
5
),
853
856
(
2012
).
12.
Q.
He
,
J.
Wang
,
H.
Chen
,
Z.
Ding
,
Z.
Zhou
,
L.
Xiong
,
J.
Luan
,
J.
Pelletier
,
J.
Qiao
, and
Q.
Wang
, “
Highly distorted lattices in chemically complex alloys produce ultra-elastic materials with extraordinary elinvar effects
,” arXiv:2101.02382 (
2021
).
13.
T.
Yokoyama
,
A.
Koide
, and
Y.
Uemura
, “
Local thermal expansions and lattice strains in Elinvar and stainless steel alloys
,”
Phys. Rev. Mater.
2
(
2
),
023601
(
2018
).
15.
16.
Y.-T.
Chen
,
Y.-J.
Chang
,
H.
Murakami
,
T.
Sasaki
,
K.
Hono
,
C.-W.
Li
,
K.
Kakehi
,
J.-W.
Yeh
, and
A.-C.
Yeh
, “
Hierarchical microstructure strengthening in a single crystal high entropy superalloy
,”
Sci. Rep.
10
(
1
),
12163
(
2020
).
17.
S.
Gorsse
,
Y.-T.
Chen
,
W.-C.
Hsu
,
H.
Murakami
, and
A.-C.
Yeh
, “
Modeling the precipitation processes and the formation of hierarchical microstructures in a single crystal high entropy superalloy
,”
Scr. Mater.
193
,
147
152
(
2021
).
18.
T.-N.
Lam
,
S. Y.
Lee
,
N.-T.
Tsou
,
H.-S.
Chou
,
B.-H.
Lai
,
Y.-J.
Chang
,
R.
Feng
,
T.
Kawasaki
,
S.
Harjo
, and
P. K.
Liaw
, “
Enhancement of fatigue resistance by overload-induced deformation twinning in a CoCrFeMnNi high-entropy alloy
,”
Acta Mater.
201
,
412
424
(
2020
).
19.
D.
Kumar
,
B.
Jaishri
,
D. K.
Meena
,
E.-W.
Huang
,
Y.-J.
Chang
,
A.-C.
Yeh
,
J.
Jain
,
S.
Neelakantan
, and
N. N.
Gosvami
, “
Reversal of favorable microstructure under plastic ploughing vs. interfacial shear induced wear in aged Co1.5CrFeNi1.5Ti0.5 high-entropy alloy
,”
Wear
468–469
,
203595
(
2021
).
20.
T.
Saito
,
A.
Ishida
,
M.
Yuyama
,
Y.
Takata
,
K.
Kawagishi
,
A.-C.
Yeh
, and
H.
Murakami
, “
Tensile creep behavior of single-crystal high-entropy superalloy at intermediate temperature
,”
Crystals
11
(
1
),
28
(
2020
).
21.
Y.-T.
Chen
,
Y.-J.
Chang
,
H.
Murakami
,
S.
Gorsse
, and
A.-C.
Yeh
, “
Designing high entropy superalloys for elevated temperature application
,”
Scr. Mater.
187
,
177
182
(
2020
).
22.
K.-C.
Lo
,
H.
Murakami
,
J.-W.
Yeh
, and
A.-C.
Yeh
, “
Oxidation behaviour of a novel refractory high entropy alloy at elevated temperatures
,”
Intermetallics
119
,
106711
(
2020
).
23.
Z.
Rao
,
B.
Dutta
,
F.
Körmann
,
W.
Lu
,
X.
Zhou
,
C.
Liu
,
A. K.
da Silva
,
U.
Wiedwald
,
M.
Spasova
, and
M.
Farle
, “
Beyond solid solution high-entropy alloys: Tailoring magnetic properties via spinodal decomposition
,”
Adv. Funct. Mater.
31
(
7
),
2007668
(
2021
).
24.
G.
Laplanche
,
P.
Gadaud
,
C.
Bärsch
,
K.
Demtröder
,
C.
Reinhart
,
J.
Schreuer
, and
E.
George
, “
Elastic moduli and thermal expansion coefficients of medium-entropy subsystems of the CrMnFeCoNi high-entropy alloy
,”
J. Alloys Compd.
746
,
244
255
(
2018
).
25.
H.-P.
Chou
,
Y.-S.
Chang
,
S.-K.
Chen
, and
J.-W.
Yeh
, “
Microstructure, thermophysical and electrical properties in AlxCoCrFeNi (0 ≤ x ≤ 2) high-entropy alloys
,”
Mater. Sci. Eng.: B
163
(
3
),
184
189
(
2009
).
26.
L.
Liu
,
S.
Huang
,
L.
Vitos
,
M.
Dong
,
E.
Bykova
,
D.
Zhang
,
B. S.
Almqvist
,
S.
Ivanov
,
J.-E.
Rubensson
, and
B.
Varga
, “
Pressure-induced magnetovolume effect in CoCrFeAl high-entropy alloy
,”
Commun. Phys.
2
(
1
),
42
(
2019
).
27.
C.-L.
Lin
,
J.-L.
Lee
,
S.-M.
Kuo
,
M.-Y.
Li
,
L.
Gan
,
H.
Murakami
,
S.
Mitani
,
S.
Gorsse
, and
A.-C.
Yeh
, “
Investigation on the thermal expansion behavior of FeCoNi and Fe30Co30Ni30Cr10−xMnx high entropy alloys
,”
Mater. Chem. Phys.
271
,
124907
(
2021
).
28.
D.
Hobbs
, “
The dependence of the bulk modulus, Young's modulus, creep, shrinkage and thermal expansion of concrete upon aggregate volume concentration
,”
Matér. Constr.
4
(
2
),
107
114
(
1971
).
29.
H.
Masumoto
,
H.
Saito
, and
T.
Kono
, “
Science reports of the research institutes, Tohoku University
,”
Ser. A, Physics, Chem. and Metallurgy
6
,
529
538
(
1954
).
30.
G.
Hausch
,
R.
Bächer
, and
J.
Hartmann
, “
Influence of thermomechanical treatment on the expansion behavior of invar and superinvar
,”
Physica B
161
(
1–3
),
22
24
(
1990
).
31.
K.
Fabian
,
V. P.
Shcherbakov
, and
S. A.
McEnroe
, “
Measuring the Curie temperature
,”
Geochem., Geophys., Geosyst.
14
(
4
),
947
961
, (
2013
).
32.
J. R.
Gómez
,
R. F.
Garcia
,
A. D. M.
Catoira
, and
M. R.
Gómez
, “
Magnetocaloric effect: A review of the thermodynamic cycles in magnetic refrigeration
,”
Renewable Sustainable Energy Rev.
17
,
74
82
(
2013
).
33.
G.
Laplanche
,
P.
Gadaud
,
O.
Horst
,
F.
Otto
,
G.
Eggeler
, and
E.
George
, “
Temperature dependencies of the elastic moduli and thermal expansion coefficient of an equiatomic, single-phase CoCrFeMnNi high-entropy alloy
,”
J. Alloys Compd.
623
,
348
353
(
2015
).
34.
S.
Van Bohemen
, “
The nonlinear lattice expansion of iron alloys in the range 100–1600 K
,”
Scr. Mater.
69
(
4
),
315
318
(
2013
).
35.
D.
Holec
,
N.
Abdoshahi
,
S.
Mayer
, and
H.
Clemens
, “
Thermal expansion and other thermodynamic properties of α2-Ti3Al and γ-TiAl intermetallic phases from first principles methods
,”
Materials
12
(
8
),
1292
(
2019
).
36.
J. W.
Yeh
,
S. K.
Chen
,
S. J.
Lin
,
J. Y.
Gan
,
T. S.
Chin
,
T. T.
Shun
,
C. H.
Tsau
, and
S. Y.
Chang
, “
Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes
,”
Adv. Eng. Mater.
6
(
5
),
299
303
(
2004
).
37.
R.
Frank
, “
The long-term thermal stability of thermo-span alloy
,”
JOM
52
(
1
),
37
39
(
2000
).
38.
See https://www.specialmetals.com/assets/smc/documents/alloys/incoloy/incoloy-alloy-903.pdf for “
S.M. Corporation
, INCOLOY alloy 903 - Special Metals” (
2004
).
39.
See https://www.specialmetals.com/assets/smc/documents/alloys/incoloy/incoloy-alloy-909.pdf
S.M. Corporation, INCOLOY alloy 909 - Special Metals
” (
2004
).
40.
K.
Sato
and
T.
Ohno
, “
Development of low thermal expansion superalloy
,”
J. Mater. Eng. Perform.
2
(
4
),
511
516
(
1993
).
41.
A.
Williams
,
V.
Moruzzi
,
A.
Malozemoff
, and
K.
Terakura
, “
Generalized Slater-Pauling curve for transition-metal magnets
,”
IEEE Trans. Magn.
19
(
5
),
1983
(
1983
).
42.
H.
Wang
,
J.
Zhao
,
W.
Liu
, and
B.
Wei
, “
An anomalous thermal expansion phenomenon induced by phase transition of Fe-Co-Ni alloys
,”
J. Appl. Phys.
124
(
21
),
215107
(
2018
).
43.
Z.
Rao
,
D.
Ponge
,
F.
Körmann
,
Y.
Ikeda
,
O.
Schneeweiss
,
M.
Friák
,
J.
Neugebauer
,
D.
Raabe
, and
Z.
Li
, “
Invar effects in FeNiCo medium entropy alloys: From an Invar treasure map to alloy design
,”
Intermetallics
111
,
106520
(
2019
).
44.
O.
Schneeweiss
,
M.
Friák
,
M.
Dudová
,
D.
Holec
,
M.
Šob
,
D.
Kriegner
,
V.
Holý
,
P.
Beran
,
E. P.
George
, and
J.
Neugebauer
, “
Magnetic properties of the CrMnFeCoNi high-entropy alloy
,”
Phys. Rev. B
96
(
1
),
014437
(
2017
).
45.
T.
Masumoto
,
S.
Ohnuma
,
K.
Sugawara
, and
H.
Kimura
, “
New type Fe-Mn based alloys with super Elinvar and invar characteristics
,”
Mater. Trans.
58
,
701
(
2017
).
46.
M.
Lucas
,
D.
Belyea
,
C.
Bauer
,
N.
Bryant
,
E.
Michel
,
Z.
Turgut
,
S.
Leontsev
,
J.
Horwath
,
S.
Semiatin
, and
M.
McHenry
, “
Thermomagnetic analysis of FeCoCrxNi alloys: Magnetic entropy of high-entropy alloys
,”
J. Appl. Phys.
113
(
17
),
17A923
(
2013
).
47.
J.
Wachtman
, Jr.
,
W.
Tefft
,
D.
Lam
, Jr.
, and
C.
Apstein
, “
Exponential temperature dependence of Young's modulus for several oxides
,”
Phys. Rev.
122
(
6
),
1754
(
1961
).
48.
R.
Farraro
and
R. B.
McLellan
, “
Temperature dependence of the Young's modulus and shear modulus of pure nickel, platinum, and molybdenum
,”
Metall. Trans. A
8
(
10
),
1563
1565
(
1977
).
49.
Z.
Han
,
W.
Ren
,
J.
Yang
,
Y.
Du
,
R.
Wei
,
C.
Zhang
,
Y.
Chen
, and
G.
Zhang
, “
The deformation behavior and strain rate sensitivity of ultra-fine grained CoNiFeCrMn high-entropy alloys at temperatures ranging from 77 K to 573 K
,”
J. Alloys Compd.
791
,
962
970
(
2019
).
You do not currently have access to this content.